《2022年初一上学期数学知识点归纳.docx》由会员分享,可在线阅读,更多相关《2022年初一上学期数学知识点归纳.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年初一上学期数学知识点归纳 初一上学期数学学问点归纳有哪些你知道吗?初一数学解答题答题技巧,应细致审题,再规范表述,最终给出结论,一起来看看初一上学期数学学问点归纳,欢迎查阅! 七年级上册数学学问 整式的加减 单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中全部字母指数的和,叫单项式的次数. 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中全部字母指数的和,
2、叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;留意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为: 6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是-号,括号里
3、的各项都要变号. 9.整式的加减:整式的加减,事实上是在去括号的基础上,把多项式的同类项合并. 10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).留意:多项式计算的最终结果一般应当进行升幂(或降幂)排列. 初一数学学问大全 代数初步学问 1.代数式:用运算符号+-连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式) 2.列代数式的几个留意事项: (1)数与字母相乘,或字母与字母相乘通常运用乘,或省略不写; (2
4、)数与数相乘,仍应运用乘,不用乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a应写成a; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式; (6)a与b的差写作a-b,要留意字母依次;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a. 3.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2; (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c; (3
5、)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1; (4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2. 有理数负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n. 1.有理数: (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;不是有理数;
6、 (2)有理数的分类: (3)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数0和正整数;a0a是正数;a0a是负数; a0a是正数或0a是非负数;a0a是负数或0a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0a+b=0a、b互为相反数. 4.肯定值: (1)正数的肯定
7、值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离; (2)肯定值可表示为:或;肯定值的问题常常分类探讨; (3); (4)|a|是重要的非负数,即|a|0;留意:|a|b|=|ab|,. 5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数恒久比0大,负数恒久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0. 6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若a0,那么的倒数是;倒数是本身的数是1;若ab=1a、b
8、互为倒数;若ab=-1a、b互为负倒数. 初一数学上册学问 一元一次方程 利用图形分析数学问题是数形结合思想在数学中的体现,细致读题,依照题意画出有关图形,使图形各部分具有特定的含义,填入有关的代数式是获得方程的基础. 1.等式与等量:用=号连接而成的式子叫等式.留意:等量就能代入! 2.等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 3.方程:含未知数的等式,叫方程. 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;留意:方程的解就能代入! 5.移项:变更符号后,把方
9、程的项从一边移到另一边叫移项.移项的依据是等式性质1. 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0). 8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a0). 9.一元一次方程解法的一般步骤:整理方程去分母去括号移项合并同类项系数化为1(检验方程的解). 10.列一元一次方程解应用题: (1)读题分析法:多用于和,差,倍,分问题 初一上学期数学学问点归纳第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页