《初一上学期数学知识点归纳总结范本.docx》由会员分享,可在线阅读,更多相关《初一上学期数学知识点归纳总结范本.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初一上学期数学知识点归纳总结初一上学期数学学问点归纳总结1 (一)正负数 1.正数:大于0的数。 2.负数:小于0的数。 3.0即不是正数也不是负数。 4.正数大于0,负数小于0,正数大于负数。 (二)有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:) 2.整数:正整数、0、负整数,统称整数。 3.分数:正分数、负分数。 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线
2、上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。 4.肯定值:正数的肯定值是它本身,负数的肯定值是它的相反数;0的肯定值是0,两个负数,肯定值大的反而小。 (四)有理数的加减法 1.先定符号,再算肯定值。 2.加法运算法则:同号相加,到相同符号,并把肯定值相加。异号相加,取肯定值大的加数的符号,并用较大的肯定值减去较小的肯定值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。 3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。 4.
3、加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。 (五)有理数乘法(先定积的符号,再定积的大小) 1.同号得正,异号得负,并把肯定值相乘。任何数同0相乘,都得0。 2.乘积是1的两个数互为倒数。 3.乘法交换律:ab=ba 4.乘法结合律:(ab)c=a(bc) 5.乘法安排律:a(b+c)=ab+ac (六)有理数除法 1.先将除法化成乘法,然后定符号,最终求结果。 2.除以一个不等于0的数,等于乘这个数的倒数。 3.两数相除,同号得正,异号得负,并把肯定值相除,0除以任何一个不等
4、于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。 4.同底数幂相除,底不变,指数相减。 (八)有理数的加减乘除混合运算法则 1.先乘方,再乘除,最终加减。 2.同级运算,从左到右进行。 3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。 (九)科学记数法、近似数、有效数字。 初一上学期数学学问点归纳总结2 其次章:整式的加减 1、单项式:;单独的一个数或一个字母也是单项式 2、系数:; 3、单项式的次数:
5、; 4、多项式:; 叫做多项式的项;的项叫做常数项。 5、多项式的次数:; 6、整式:; 7、同类项:; 8、把多项式中的同类项合并成一项,叫做合并同类项; 合并同类项后,所得项的系数是合并同前各同类项的系数的和,且字母部分不变。 9、去括号:(1)假如括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同 (2)假如括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反 10、一般地,几个整式相加减,假如有括号就先去括号,然后再合并同类项 第三章:一次方程(组) 一、方程的有关概念 1、方程的概念: (1)含有未知数的等式叫方程。 (2)在一个方程中,只含有一个未知数,并且未
6、知数的指数是1,系数不为0,这样的方程叫一元一次方程。 2、等式的基本性质: (1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。若a=b,则a+c=b+c或ac=bc。 (2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。若a=b,则ac=bc或 二、解方程 1、移项的有关概念: 把方程中的某一项变更符号后,从方程的一边移到另一边,叫做移项。这个法则是依据等式的性质1推出来的,是解方程的依据。把某一项从方程的左边移到右边或从右边移到左边,移动的项肯定要变号。 2、解一元一次方程的步骤: 解一元一次方程的步骤 主要依据 1、去分母 等式的性质2 2、去括号
7、去括号法则、乘法安排律 3、移项 等式的性质1 4、合并同类项 合并同类项法则 5、系数化为1 等式的性质2 6、检验 3、二元一次方程组 (1)将二元一次方程用含有一个未知数的代数式表示另一个未知数; (2)解二元一次方程组的指导思想是转化的思想; (3)解二元一次方程组的方法有:加减消元法;代入消元法; 二、列方程解应用题 1、列方程解应用题的一般步骤: (1)将实际问题抽象成数学问题; (2)分析问题中的已知量和未知量,找出等量关系; (3)设未知数,列出方程; (4)解方程; (5)检验并作答。 2、一些实际问题中的规律和等量关系: (1)几种常用的面积公式: 长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积; 梯形面积公式:S=,a,b为上下底边长,h为梯形的高,S为梯形面积; 圆形的面积公式:,r为圆的半径,S为圆的面积; 三角形面积公式:,a为三角形的一边长,h为这一边上的高,S为三角形的面积。 (2)几种常用的周长公式: 长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长。 正方形的周长:L=4a,a为正方形的边长,L为周长。 圆:L=2r,r为半径,L为周长。 初一上学期数学学问点归纳总结