2022年初中数学解题技巧归纳.docx

上传人:h**** 文档编号:24503437 上传时间:2022-07-05 格式:DOCX 页数:4 大小:18.46KB
返回 下载 相关 举报
2022年初中数学解题技巧归纳.docx_第1页
第1页 / 共4页
2022年初中数学解题技巧归纳.docx_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《2022年初中数学解题技巧归纳.docx》由会员分享,可在线阅读,更多相关《2022年初中数学解题技巧归纳.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022年初中数学解题技巧归纳 学习方法介绍之初中数学解题技巧整理,极客数学帮整理了初中数学的几大解题技巧,帮助同学们在练习过程中更好更快的完成练习。这样长期练习解题技巧,在考试中节能节约肯定的时间。下面是我为大家整理的关于初中数学解题技巧,希望对您有所帮助。欢迎大家阅读参考学习! 初中数学解题技巧 1、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有很多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系

2、数等等。 2、配方法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用非常特别广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都常常用到它。 3、构造法 在解题时,我们经常会采纳这样的方法,通过对条件和结论的分析,构造协助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几

3、何等各种数学学问相互渗透,有利于问题的解决。 4、换元法 换元法是数学中一个特别重要而且应用非常广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较困难的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 5、待定系数法 在解数学问题时,若先推断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后依据题设条件列出关于待定系数的等式,最终解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质

4、定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。用归纳法或分析法证明平面几何题,其困难在添置协助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只须要计算,有时可以不添置补助线,即使须要添置协助线,也很简单考虑到。 7、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),

5、解不等式,探讨函数乃至几何、三角运算中都有特别广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简洁应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有特别广泛的应用。 8、反证法 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设动身,经过正确的推理,导致冲突,从而否定相反的假设,达到确定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反

6、证法的基础,为了正确地作出反设,驾驭一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。 归谬是反证法的关键,导出冲突的过程没有固定的模式,但必需从反设动身,否则推导将成为无源之水,无本之木。推理必需严谨。导出的冲突有如下几种类型:与已知条件冲突;与已知的公理、定义、定理、公式冲突;与反设冲突;自相冲突。 9、几何变换法在数学问题的探讨中,经常运用变换法,把困难性问题转化为简洁性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的探讨和运动中的探讨结合起来,有利于对图形本质的相识。几何变换包括:(1)平移;(2)旋转;(3)对称。 第4页 共4页第 4 页 共 4 页第 4 页 共 4 页第 4 页 共 4 页第 4 页 共 4 页第 4 页 共 4 页第 4 页 共 4 页第 4 页 共 4 页第 4 页 共 4 页第 4 页 共 4 页第 4 页 共 4 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁