《2022年初中数学几何题解题技巧.docx》由会员分享,可在线阅读,更多相关《2022年初中数学几何题解题技巧.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年初中数学几何题解题技巧 立体几何是初中数学中的重要内容,也是学习的难点,而且在中考中立体几何属于必考点,通常在一个题目中会包含多个立体几何的考查点,驾驭立体几何解题技巧至关重要。那么接下来给大家共享一些关于初中数学几何题解题技巧,希望对大家有所帮助。 一.添协助线有二种状况 1按定义添协助线: 如证明二直线垂直可延长使它们,相交后证交角为90;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添协助线。 2按基本图形添协助线: 每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添协助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应当
2、叫做“补图”!这样可防止乱添线,添协助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添协助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简洁的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现
3、线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;假如出现两条相等线段或两个档相等角关于某始终线
4、成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成始终线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相像三角形: 相像三角形有平行线型(带平行线的相像三角形),相交线型,旋转型;当出现相比线段重叠在始终线上时(中点可看成比为1)可添加平行线得平行线型相像三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特别角直角三角形 当出现30,45,60,135,150度特别角时可添加特别角直角三角形,利用45角直角三角形三边比为
5、1:1:2;30度角直角三角形三边比为1:2:3进行证明 (9)半圆上的圆周角 出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦-直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。 二.基本图形的协助线的画法 1.三角形问题添加协助线方法 方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,经常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很简单地解决了问题。 方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的学问解决问题。 方法3:结论是两线段
6、相等的题目常画协助线构成全等三角形,或利用关于平分线段的一些定理。 方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采纳截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于 第一条线段,而另一部分等于其次条线段。 2.平行四边形中常用协助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添协助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相像,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线: (2)过顶点作对边的垂线构
7、造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线 (4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相像或等积三角形。 (5)过顶点作对角线的垂线,构成线段平行或三角形全等. 3.梯形中常用协助线的添法 梯形是一种特别的四边形。它是平行四边形、三角形学问的综合,通过添加适当的协助线将梯形问题化归为平行四边形问题或三角形问题来解决。协助线的添加成为问题解决的桥梁,梯形中常用到的协助线有: (1)在梯形内部平移一腰。 (2)梯形外平移一腰 (3)梯形内平移两腰 (4)延长两腰 (5)过梯形上底的两端点向下底作高 (6)平移对角线 (7)连接梯
8、形一顶点及一腰的中点。 (8)过一腰的中点作另一腰的平行线。 (9)作中位线 当然在梯形的有关证明和计算中,添加的协助线并不肯定是固定不变的、单一的。通过协助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。 4.圆中常用协助线的添法 在平面几何中,解决与圆有关的问题时,经常须要添加适当的协助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,敏捷驾驭作协助线的一般规律和常见方法,对提高学生分析问题和解决问题的实力是大有帮助的。 (1)见弦作弦心距 有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的
9、联系。 (2)见直径作圆周角 在题目中若已知圆的直径,一般是作直径所对的圆周角,利用直径所对的圆周角是直角这一特征来证明问题。 (3)见切线作半径 命题的条件中含有圆的切线,往往是连结过切点的半径,利用切线与半径垂直这一性质来证明问题。 (4)两圆相切作公切线 对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。 (5)两圆相交作公共弦 对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。 初中几何常见协助线作法歌诀汇编 人说几何很困难,难点就在协助线。协助线,如何添?把握定理和概念。
10、还要刻苦加钻研,找出规律凭阅历。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相像,比线段,添线平行成习惯。等积式子比例换,找寻线段很关键。 干脆证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长
11、度的计算,勾股定理最便利。 要想证明是切线,半径垂线细致辨。是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。假如遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。若是添上连心线,切点确定在上面。 要作等角添个圆,证明题目少困难。协助线,是虚线,画图留意勿变更。 假如图形较分散,对称旋转去试验。基本作图很关键,平常驾驭要娴熟。 解题还要多心眼,常常总结方法显。切勿盲目乱添线,方法敏捷应多变。 分析综合方法选,困难再多也会减。虚心勤学加苦
12、练,成果上升成直线。 几何证题难不难,关键常在协助线;知中点、作中线,中线处长加倍看; 底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等; 公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠; 中位线、常相连,出现平行就好办;四边形、对角线,比例相像平行线; 梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线; 正余弦、正余切,有了直角就便利;特别角、特别边,作出垂线就解决; 实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们渐渐谈; 弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添; 两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线; 基本图形要娴熟,困难图形多分解;以上规律属一般,敏捷应用才便利。 初中数学几何题解题技巧第8页 共8页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页