《2022年机械系统动力学_绪论 .pdf》由会员分享,可在线阅读,更多相关《2022年机械系统动力学_绪论 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一章 绪 论1.1机械系统动力学的研究内容机械系统动力学是研究机械结构在动态载荷作用下的动力学行为的科学,是20 世纪中叶才发展起来的一门学科。机械动力学与机械振动学是紧密相关的学科,它是进行机械结构动力优化设计的基础。动态载荷作用于动态系统,就构成一个动态问题。所谓动态载荷即迅速变化的载荷,它包括交变载荷与突变载荷。当载荷的频率成分之一接近或超过系统的某一固有频率时,就必须作为一个动态问题,而不是静态问题来处理。事实上,工程中的许多问题都必须看作动态问题。江西机械 http:/www.changlin-与静态问题比较起来,动态问题具有以下特点:1.复杂性造成动态问题的复杂性的主要原因是其载
2、荷作用的“后效性”与其响应对应于过去经历载荷的“记忆性”。前者是指某时刻作用在系统上的载荷不仅只影响系统在该时刻的响应,而影响系统在此后各时刻的响应;后者则是指系统在任一时刻的响应不只由该时刻的载荷来决定,而是由在该时刻之前系统所经受的载荷的全部历程来决定,好像系统能记住它过去的经历一样。动载荷对系统的作用是首先改变系统在各个时刻的初态,这些受扰的初态就按系统内在的模式,向前运动和发展,然后才能决定系统在其后各个时刻的总的响应。由此可见,一个动态系统在受到外加扰动时,其响应并不是亦步亦趋地跟踪载荷的变化,而是力图表现出它的个性;对一个动态系统施加控制,只有顺应该系统的内在模式,才能收到预期的效
3、果。由于上述特性,使得对一个动态系统的辨识、响应预测或控制,都要比对静态问题复杂得多。2.危险性动态系统可能十分危险,其危险性主要是由两种因素引起的:其一为共振现象,当扰动频率接近系统的固有频率时,微小的载荷可以引起“轩然大波”,在结构中激起比静态响应大很多倍的动态位移响应与应力响应,产生巨大的破坏力;其二为自激振动,在一定的条件下,一个动态系统(例如金属切削机床、轧钢机或飞机等等),可以在没有外加交变激励的情况下,突然振动起来,振幅猛烈上升而产生巨大的破坏性。例如机床上如果发生这种振动,便难于正常地进行切削加工,而飞机如果产生这种振动,往往会产生机毁人亡的后果。这种振动即自激振动。它似乎是“
4、无缘无故”地发生的,对其机理的剖析及防治都比较困难。http:/www.xinyi-汽车配件网3.超常性动态问题的现象、规律及其防治方法往往超越人们的生活常识之外,无法以直观的方法来说明和理解,而必须通过严谨的理论分析,才能得以解释和加以预测。动态问题的许多解答当然是在乎道理之中,却往往又出人意料之外。这里举一个很简单的例子。例如,一个工作机械,受到一定频率的扰动,而扰动频率又正好等于机械结构的固有频精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 8 页率,于是产生强烈的共振,无法正常工作。如果不是基于理论分析,而凭“想当然”,恐怕谁也
5、不敢想象以下的消振方案:在该工作机械上再加装一个子系统,并使此子系统的固有频率正好等于扰动频率。人们可能“直观”地以为,这样以来,振动将会加倍厉害。但事实是工作机械的振动竟然完全被消除了,此即所谓“无阻尼调谐消振器”。振动理论对其工作原理给出了满意的解释。总之,动态问题在本质上不同于静态问题,不能归结为静态问题。以静态的观点与方法来看待与处理动态问题这是非常危险的,而动态的观念与动态的知识不是自然而然地可以得到的,而必须经过刻苦的学习和钻研才能掌握。机械结构或者机械系统是我们研究的一个客观实体,我们称之为系统。外界对系统的作用可以是力(力矩 )或称载荷,也可以是运动,我们通称为激励,前者为力激
6、励,后者为运动激励。系统受到激励后的行为我们则称之为响应。一般用机械系统的某一个构件或某点的位移 (线、角 )、速度、加速度的时间函数来表示,其实机械中的各构件,运动副中受到的力,如应力应变也都属于响应。http:/www.xinyi-汽车配件网现代机械动力学主要研究对象就是激励、系统和响应,而其主要研究内容就是三者的关系,归结为以下三个方面的问题:1.已知载荷和结构参数求结构的响应,称为响应预估问题,它是机械动力学的正问题,也是机械动力学研究的核心问题。这类问题一般借助于多种动态分析方法(如模态分析法、机械阻抗法、有限元法等)对结构的动态特性进行研究。即为已知激励和系统求响应。2.已知载荷和
7、结构响应求结构参数或数学模型,称为参数辨识或系统辨识问题,它是机械动力学的第一类逆问题。这类问题通常要借助于模态分析的方法来识别结构参数,正确地建立结构的数学模型,并完成从模态参数到物理参数的转换,这样才能弄清结构的薄弱环节,为改进结构提供依据。即为已知激励和响应求系统。3.已知结构参数和响应求载荷,称为载荷辨识问题,它是机械动力学的第二类逆问题。这类问题通常先进行第一类逆问题的计算和测试,求得结构参数,然后方能进行载荷辨识,以弄清外界扰动力的水平和规律。即为已知系统和响应求激励。1.2系统与机械系统江西机械 http:/www.changlin-现代的工程问题不仅要对系统进行动态特性的分析,
8、而且还需要对系统进行综合,即将所要研究和处理的对象当作一个系统,看其中元素和元素之间的关联,并从整体的角度来协调好这种关联,使这个系统在我们所要求的某种性能指标下达到最佳状态,这正是系统论的基本思想。从系统论的观点看,系统是一些元素的组合,这些组合在一起的元素通过相互作用共同完成给定的任务。系统的概念不仅适用于物理系统,而且可以推广到任何动态现象,包括自然系统(例如太阳系统,生态系统)和人工系统 (例如经济系统,交通运输系统、商业系统)等。本书所要研究的是由机械元件组成的机械系统,例如平面连杆机构系统,由凸轮元件组成的凸轮机构系统,由齿轮元件组成的齿轮系统等等。这些元件常与电气系统,液压系统相
9、结合一种新的系统。如机和电形成的机电一体化系统,机械和液压结合形成的精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 8 页机液控制系统等。因此,机械系统动力学也常常研究这些系统的动力学问题,所以研究机械系统动力学具有极其重要的意义。分析任何一种动态系统,都应首先建立它的数学模型,建立一个合理的数学模型是分析过程的关键。机械系统的数学模型是指对机械系统动态特性的数学描述,通常机械系统的数学模型是用微分方程来描述的。机械系统的数学模型通常可分为离散系统和连续系统两大类,也可以根据描述系统的微分方程是否为线性的,分为线性系统和非线性系统。有时
10、也根据其数学模型的确定性、随机性和模糊性进行分类。1.3 离散系统和连续系统机械系统动力学是借助于模型进行研究,模型是将实际事物抽象化而得到的。例如质点、刚体、梁、板、壳、弹簧-质量系统等等都是抽象化的模型。抽象化的方法并不是脱离实际,而是为了抓住事物的主要因素,忽略次要因素,在一定的条件下更能深刻地反映客观实际。任何机器、结构或它们的零部件都具有弹性与质量。若机械各构件的弹性变形很小,以致可以忽略不计,则可近似认为系统是由刚体构件组成的,当构件的弹性变形不能忽略时,则机械系统的动力学模型可分为离散系统(或称集中参数系统)和连续系统 (或称分布参数系统)两大类。离散系统是由集中参数元件组成的,
11、基本的集中参数有三种,即质量,弹簧与阻尼器。如图1- 1a 所示的安装在混凝土基础上的精密机器,为了隔振,在基础下面一般装有弹性衬垫。在隔振分析中需要考察机器与基础的整体振动,这时机器与基础可视为一个刚体。起着质量的作用具有惯性,弹性衬垫起着弹簧的作用,衬垫的内摩擦以及基础与周围约束之间的摩擦起着阻尼的作用。因而这一系统可以简化成图l- 1b 所示的集中参数系统。离散系统的运动在数学上用常微分方程来描述。再如图1-2 所示简支梁系统,当研究梁在垂直平面内的振动时,若只考虑梁作为一个整体而振动,且简化质心点取在梁的中点处时,梁有总体重量m 和纵向方向的变形,可简化为图1-2b 所示的具有m 和
12、k 集中参数元件的系统,即用离散系统来研究和分析。而要研究每一点的振动特性时,由于梁具有分布的空间质量和每点都有不同的变形,故用图1-2a 作为连续系统来处理。mkc a) b) a) b) 图 1-1 机床系统图 1-2 简支梁系统连续系统是由弹性元件组成的。典型的弹性元件有杆、梁,轴,板、壳等。弹性体的惯性,弹性和阻尼实际上是连续分布的,亦称为分布参数系统,连续系统的运动在数学上用偏微分方程来描述。机械系统中有不少问题需要简化为连续系统的模型。mk精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 8 页离散系统和连续系统形式上代表不同
13、类型的系统,似乎它们具有不同的动态特性,但事实上恰恰相反,因为离散系统和连续系统只不过是表示同一物理系统的两个数学模型而已,由此推测它们应具有类似的动力学性态。尽管这两种系统分别是由常微分方程和偏微分方程来描述的,但它们的性态实际上是相似的。为了论证这一点,我们将从杆的纵向振动微分方程的导出来说明它们之间的内在联系。http:/www.xinyi-汽车配件网dxxuuxdxTFudxxFFTTa) k1iuiu1iuix1ix1TiFTiF1imim1imimb) 图 1-3 连续系统与离散系统现在我们讨论如图1-3a 所示的两端固定的杆的纵向振动方程。取杆的纵向作为x轴,各个截面的纵向位移表
14、示为u(x,t),见图1-3a。杆的微元dx 在自由振动中的受力图也在图1-3a 中给出。设杆单位体积的质量为、杆长为l、截面面积为A、材料的弹性模量为E,杆在 x 截面处的纵向应变为(x),纵向张力为FT(x)。由材料力学可知,在x 截面处有:xux)(xuAEAExFT)(而在 x+dx 截面处的张力则为:)(22dxxuxuAEdxxFFTT杆的微元dx 的运动微分方程为:dxxuAEtuAdx2222令 c2=E/,则上式可化为:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 8 页222221tucxu(1-1)式(1-1)
15、称为波动方程。杆的纵向振动除要满足上述波动方程外,还必须满足下列边界条件:u(0, t)=u(l,t)=0 (1-2 )方程式 (1-1)和(1-2)即为用连续系统模型导出的杆的纵向振动偏微分方程。在第八章中 将 说 明 它 们 构 成 了 所 谓 的 边 值 问 题 , 其 解 法 亦 将 在 那 里 进 行 讨 论 。江 西 机 械http:/www.changlin-以下,我们将改用离散系统模型来研究上述问题,并指出当离散系统模型取极限时,它将趋近于上述连续系统模型。首先将系统简化为图1-3b 所示的由无质量弹簧ki(i=1,2, n+1)和集中质量mi(i=1,2, n)组成的系统。为
16、了导出有代表性的质量 mi的运动微分方程,可研究图1-3b 中的三个相邻质量mi-1,mi和 mi+1。连结 mi和 mi-1及 mi和 mi+1的线段中的张力分别用FTi-1及 FTi表示,这二线段分别为 xi-1和xi。由牛顿第二定律,质量mi在水平方向的运动方程为:22111)()(dtudmuukuukiiiiiiii (1-3) 方程式 (1-3)适用于任一质量mi(i=2,3, n-1),也可用于i=1 和 i=n,但必须附加一些规定以反映系统的支承形式,因为方程式(1-3)对 i=1 和 i=n 分别包含位移u0和un+1,如果杆两端固支,方程式(1-3)中必须令u0(t)=un
17、+1(t)=0 为了得到离散系统和连续系统的相似性,我们有必要对方程式(1-3)作进一步讨论。为此引出如下符号ui+1-ui=ui1,ui- ui-1=uiiixAEkiixAm则方程式 (1-3)可化为2211dtudxAxuAExuAEiiiiii (1-4) 注意到方程式(1- 4)左边的两项实际上是质量mi左边和右边之间水平力的增量,据此,可将方程式(1- 4)写成22dtudxAxuAEiiii (1-5) 将方程式 (1- 5)两边除以 xi得22dtudExuxiiii (i=1,2, n) (1-6) 精选学习资料 - - - - - - - - - 名师归纳总结 - - -
18、- - - -第 5 页,共 8 页如果在式 (1- 6)中令质量mi的数 n 无限增多,而把它们的质量mi以及 mi之间的距离相应地减小,并用连续变量x 代替下标的位置,这样在取极限时, x0,式 (1-6 )成为:222221tucxu上述结果与连续系统的运动方程式(1- 1)是一致的,可见,虽然图1-3a 与图 1-3b 的外形不一样,但它们的数学模型却密切相关。以上完成了从图1-3b 所示离散系统到图1-3a 连续系统的过渡,通过一个极限过程,相当于把质量扩展分布到整个杆。可见这两种数学模型虽然在形式上是极不相同的,但它们之间却存在着本质上的内在联系。这说明了无论数学模型如何选取,许多
19、复杂的连续系统总可以离散化进行近似计算。例如,可以预料有限单元法中的数学模型与传递矩阵法中的数学模型,将有相似的动力学特性。在工程实际应用中,许多连续系统的问题,不可能求出封闭形式的精确解,只能求出近似解,例如对非均匀杆等复杂结构,总是把连续系统离散化,然后再集中为离散系统进行计算。1.4线性系统和非线性系统如果一个系统的数学模型可以用线性微分方程来描述,则该系统称为线性系统。当机械系统的质量不随运动学参数(如坐标、速度和加速度等)而变化,并且系统的弹性力和阻尼力都可以简化为线性模型时,则该系统通常为线性系统。在实际情况中,严格的线性系统是不存在的。但在许多情况下,只要位移不大,按照线性弹簧与
20、线性阻尼的假设所得到的结论具有足够的准确性,有很好的实用价值。凡是不能简化为线性系统的动力学系统都称为非线性系统。非线性系统的数学模型是由非线性微分方程来表示的。线性系统的重要特征是能够应用叠加原理。叠加原理指出:对于同时作用于系统的两个不同输入(激励 ),所产生的输出(响应 )是这两个输入单独作用产生的响应之和。虽然对于许多实际系统都可以简化为线性系统,但这样的简化必须受到一定的限制。例如大家所熟悉的单摆系统,其摆长为l,质量为m,如图 1-4 所示。其运动微分方程式为:0sin2xmglxml (1-7) 式中, x单摆的角位移。当x很小时,可用x 代替 sinx,这样式 (1-7) 简化
21、为:02mglxxml (1-8) 这是我们所非常熟悉的二阶线性方程,其解的周期为glT2,即周期不依赖于初始位移和初始速度,系统的运动具有等时性。在大位移的场合下,上述结论是不正确的,因为方程式(1-8)对于大位移式不精确的。如果用sinx 幂级数的前两项代替sinx,则lommg图 1-4 单摆系统精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 8 页在 x 1rad 时,仍是相当精确的。并在此假设下,方程(1-7)简化为:0)6(32xxmglxml这是一个非线性方程。根据非线性方程理论,系统已不具有运动等时性。在非线性系统中,叠
22、加原理已不再适用。求解非线性系统的问题大多都是很复杂的,通常不可能求出它的封闭解。因此,在实用中总是尽量地将非线性系统在给定条件附近线性化,近似地用线性数学模型来代替。这样许多只适用于线性系统的方法都可以应用。1.5确定性系统与随机性系统系统的激励可分为确定性和随机性两大类。确定性激励:系统的激励是时间的确定性函数,例如正弦与余弦函数激励、脉冲函数激励等。如果系统的质量、弹性和阻尼以及激励都是确定性的,则系统可用确定性的微分方程来表示,当初始条件已知时,就可以求出系统之后的运动状态,这种情况称为确定性现象。随机性激励:系统的激励是时间的非确定性函数,不能用解读式或表达式给出,但具有一定的统计规
23、律,必须用随机过程来表示。所对应的微分方程为随机微分方程,不能实际表示出来。例如汽车在道路上行驶时,路面高低凹凸不平给予其汽车的激励,可以看成是随机的。这类问题不属于本课程研究范围,在此不赘述。1.6工程中的机械系统动力学问题随着科学技术的飞速发展,各种工程结构和工业产品向大型、高速、大功率、高性能和轻结构方向发展,使得机械动力学问题越来越突出,越来越严重。例如机床的加工精度问题主要是机床的切削颤振引起的。飞机由于强度原因引发的事故中,大多数是由振动疲劳所致。大功率汽轮发电机组出现频繁的事故,促进的转子动力学发展。高速火车的发展,人们不得不研究轮轨振动力学以及随之而来的噪声污染问题。大型火箭导
24、航陀螺的位置安排,必须考虑火箭的模态振型,因此在设计过程中必须进行模态分析和计算。在现代机械结构设计中,一般来说,静强度问题已不成什么问题,因此传统经验设计、类比设计和静态设计方法已不能满足工程要求,必须作动态分析和动态设计,而机械系统动力学是研究动态设计的基础。除此之外,机械系统动力学还是机械结构动态优化设计、可靠性设计、计算机辅助设计等学科的基础。1.7机械系统动力学的研究方法机械系统动力学的研究方法可分为两大类,即动态分析和动态实验。1.结构动态分析对于机械系统动力学正问题,动态分析一般借助于多种动态分析方法(如模态分析法、模态综合法、机械阻抗法、四端参数法、模态摄动法及有限元法等等)建
25、立结构或系统的数学模型,进而对结构的动态特性进行分析。对于机械系统动力学逆问题,动态分析通常首先进行动态实验,在此基础上根据一精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 8 页定的准则建立结构或系统的数学模型,然后借助于参数识别的方法或系统辨识的方法进行分析。江西机械 http:/www.changlin-2.动态实验结构动态实验包括模态实验、力学环境实验、模拟实验等,它是产品设计和生产中不可缺少的环节,不仅可以直接考核产品的动力学性能,也为动态分析建立可靠的数学模型提供必要的数据。本课程主要考虑机械系统动力学的正问题,主要采用结构动态分析。主要分成下列三大部分:1)刚性构件组成的单、双自由度机械系统动力学;2)单、双以及多自由度系统振动;3)机械系统的弹性体振动。本课程将分章节分别进行研究和介绍。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 8 页