2022年《认识方程》教学设计与反思 .pdf

上传人:C****o 文档编号:24106798 上传时间:2022-07-03 格式:PDF 页数:8 大小:58.39KB
返回 下载 相关 举报
2022年《认识方程》教学设计与反思 .pdf_第1页
第1页 / 共8页
2022年《认识方程》教学设计与反思 .pdf_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2022年《认识方程》教学设计与反思 .pdf》由会员分享,可在线阅读,更多相关《2022年《认识方程》教学设计与反思 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、名师精编优秀教案认识方程教学设计与反思【教学课题】认识方程【教学内容】苏教版义务教育课程标准实验教科书数学五年级(上册)第 1-2 页例 1、例 2, “试一试”和“练一练” ,练习一第 5题。【教材分析】此内容是在学生已掌握 “用字母表示数” 的基础上进行教学的,同时又是即将学习 “解方程”的基础。教材选择了天平这个直观教具, 提出了“观察天平图、用式子表示天平两边物体质量关系”的要求。在学生观察、按要求写式子,以及对写出的式子进行分析归纳的基础上,认识等式和方程。教学方程的意义,并非让学生简单地认识方程的外在特征,即“含有未知数的等式”,而是要让学生体会方程的本质特征,即揭示事件中最主要的

2、数量关系。必须引导学生借助日常生活经验,利用具体的问题情境去探寻相应的等量关系,从而构建“方程”的概念,才能更好地理解方程的意义。【教学方法】自主探究、合作交流、教师指导。【教学目标】1理解方程的概念,体会等式与方程之间的关系,会用方程描述简单情境中的等量关系。2经历将现实问题抽象成方程的过程,积累将等量关系数学化、符号化的活动经验,初步感受方程的建模思想。【教学重点】列方程表示简单的数量关系。【教学难点】理解方程的意义,即等号两边的两件事情是等价的。【教学过程】一、认识代数式与不等式1日历问题出示本月的日历图,提问:仔细观察相邻两行的数据,你发现了什么?根据学生的回答,揭示:上面一行数比下一

3、行数少7。 (或下一行数比上一行数多 7)引导:如果周三这天的日期用x 表示,那么它上一行的这一天就可以怎样表示?下一行的这一天呢?这3 天的和怎么表示?课件呈现: x-7,x+7, 3x。小结:像这样的式子,数学上称为代数式。(板书:代数式)2三角形路线图出示路线图,提问:邮递员送信,从邮局经超市到学校的路程,你能用代数名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 1 页,共 8 页 - - - - - - - - - 名师精编优秀教案式表示吗?根据学生的回答,

4、课件呈现:x+4。引导:当然,还有另一条路可走。比较这两种走法,你会选择哪一种,为什么?根据学生回答,课件呈现:x+46。启发:这里的 x 是未知的, x+46 就一定成立吗?结合图形,谁解释一下。引导学生明确:三角形任意两边的和大于第三边。进一步要求:三角形两边的差与第三边的关系呢?也就是x-46。小结:像这样的式子,数学上称为不等式。(板书:不等式)二、认识等式与方程1天平图课件呈现动态天平, 引导:这是一架天平。 我在两端的托盘里分别放上砝码,你能用不等式表示天平左右两边物体的质量关系吗?根据学生回答,课件呈现:40+20100 与 20+x100。进一步要求: 我们继续操作, 这时天平

5、两边物体的质量关系又怎么表示呢?学生回答后,课件呈现: 2x=160。3分类引导分类:从日历问题中,我们得到代数式;从路线图和天平图中,得到不等式;通过天平演示,也得到了等式。仔细观察这9 道式子的特征,你能尝试着给它们分类吗?学生讨论后,分类探究,教师巡视指导。学生汇报分类情况。提问:分类可以帮助我们更清晰地认识事物的特征。你这样分类的标准是什么呢?根据学生回答, 确定分类标准:按是否是等式来分类。 (或是否含有未知数)学生汇报分类情况,并操作演示。进一步要求:在原有分类的基础上,再选择另一个标准进行第二次分类。学生完善自己的分类。小结:通过第一次分类,我们得到是等式和不是等式两类。在此基础

6、上,我们又进行第二次分类, 得到含有未知数和不含未知数的式子两类。这样通过两次分类,就得出 4 组式子。我们分别研究一下它们的特征。根据学生回答, 明确 4 组式子类型:含有未知数但不是等式;不含未知数也不是等式;不含未知数是等式;含有未知数是等式。4概念小结:像这一组含有未知数的等式,数学上称为方程。(板书:方程概念)人类探索方程,历史源远流长。 数学史料2 最早的方程,记录在古埃及的纸草卷中。最早的方程组则记录在我国古代的九章算术中。1637 年,法国数学家笛卡尔最早用x、y、z等字母表示未知数,才形成了现在的方程。揭示课题。(板书:方程的意义)5判断呈现“练一练”第1 题 8 道式子。提

7、问:我们初步了解方程的概念,你能判断哪些式子是方程吗?引导启发:你觉得怎样就能快速准确地辨认出方程呢?名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 8 页 - - - - - - - - - 名师精编优秀教案学生回答后,小结:我们仍然要抓住方程的两条基本特征:是不是等式,有没有未知数。进一步提问:这些式子中哪些是等式呢?它的特征又是什么?学生汇报。6关系引导学生观察 8 道式子,探索等式与方程的关系。学生在小组内讨论,再尝试着用自己的方式表示。两名学生

8、汇报。小结: 数学家是用集合图来描述的, 等式与方程之间是包含和包含于的关系。方程是一类特殊的等式。所以说: “所有方程都是等式,但等式不一定是方程。”三、巩固概念,明确意义1写方程学生写方程,同桌间交流。2看图列方程课件呈现:“练一练”第 3 题。启发:要想深刻地认识方程的特征,还需要在实际问题情境中具体应用。生看图列方程。小结:我们发现,当存在相等的数量关系时,就能用方程来描述。因此,方程的实质是“等号左右两边所描述的两件事情是等价的”。3用方程表示数量关系课件呈现:“练习一”第 2 题。引导:生活中有许多这样的等量关系,怎样用方程表示呢?学生说数量关系列方程。小结:我们发现,当理解了题中

9、的等量关系,并根据它确定未知量和已知量后,就能列出方程解决问题。因此,方程的深层含义是“把未知量和已知量联系起来的等式模型”。四、总结拓展,感悟经典1总结通过今天的学习,你有什么收获?小结:这节课,我们初步认识了方程,了解了方程的意义,学会用方程描述简单情境中的等量关系。 同学们觉得方程有用吗?方程是刻画现实世界的一个有效的数学模型。2经典名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 4 页,共 8 页 - - - - - - - - - 名师精编优秀教案介绍:最

10、后,我们来共同分享九章算术方程中的经典名题。出示题目“五雀六燕”,借助图形解释。小结:一道题目,得到两个等量关系, 列出两道方程。 方程的内容非常丰富,方程的应用非常广泛,方程能帮助我们准确清晰地认识、描述和把握现实世界。方程思想是永恒的好数学。【板书设计】认识方程含有未知数的等式,称为方程。代数式不等式等 式方 程“方程”教学反思九章算术第八章为方程。北魏刘徽在其注释中最早界定了方程的概念:“程,课程也。群物总杂,各列有数,总言其实。令每行为率。二物者再程,三物者三程,皆如物数程之。并列为行,故谓之方程。”实际上,这是通过算筹摆出的增广矩阵来求解方程组。刘徽同时明确方程的价值:“以御错糅正负

11、。”这一精辟论断,随时间沙淘,今朝愈发辉映。“错糅”,当人们认识、刻画和把握错综复杂的现实世界时,首先要提炼数量间的相等关系, 这样才能从列方程的角度描述方程所反映的等量关系。正如东北师大史宁中教授表述方程的实质: “表示等式左右两边的两件事情等价。 ”这与等量关系息息相关。列方程体现了建模思想,彰显了方程思想方法的永恒魅力。因此,从纷杂中寻求等量关系是构建方程的关键所在。 “正负” , 实行对消和还原,是算术与代数两者运算上的根本区别。解方程时的移项,要涉及正负对消。把本来淹没在方程中的未知量x 暴露出来,就是还原了 x 的本来面目。 这从解方程的角度指明方程是通过变形转化求解未知数。正如华

12、师大张奠宙教授给出方程的深层含义: “把未知量和已知量联系起来寻求未知量的等式模型。”解方程体现了化归思想,突出了方程工具性特征。所以说, “以御错糅正负”,它不仅外显方程的功用,而且蕴隐方程的内涵。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 5 页,共 8 页 - - - - - - - - - 名师精编优秀教案方程思想的核心在于建模和化归。 即依据等量关系列方程和依据等式性质解方程,它分别体现着抽象和运算的过程。标准中对方程教学提出明确要求:“能根据具体问题

13、中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型。”学生在问题情境中,探索、研究,寻求已知与未知之间的内在联系,建立数量之间的相等关系, 把日常语言描述抽象成数学表达(数量关系式),再转换成数学符号(方程式) 。因此,设置数学情境,经历方程建模过程,掌握建模思想,学会化归方法,是设计方程教学必须遵循的准则。方程( equation)是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种式子,通常在两者之间有一等号“=” 。 “方程的意义”属于概念教学。 “含有未知数的等式叫做方程。 ”小学教材采用“属 +种差”的方式定义。邻近属为“等式”,种差为“含有未知数”。这是形式

14、层面的静态结论,凸显方程的外部特征。同时定义附加了“像20+x=100,2x=160”这样的限定。这就区别于函数,也避免“ x=5 是不是方程”的形式化争论。经历方程模型生成过程,寻找相等关系并列方程表示, 这是发现层面的动态过程。 由方程的外在形式过渡到深层含义或本质,是学生认知概念的深化和跃升。方程的意义, 苏教版放在五年级下册,人教版放在五年级上册,时间安排稍有差异。但其知识建构都是以“用字母表示数”为基础,再进行方程概念教学。 “用字母表示数”的形式就是代数式,是由算术走向方程的先锋。 长期以来,它的应有价值在小学阶段没有引起足够重视,这从判断是否是方程的习题中可见。学生认识方程、等式

15、、不等式,却叫不出代数式。因此,本课的设计就从代数式切入,联络知识点,层层渐进。日历图中蕴藏丰富的代数关系,这里只取相邻行之间日期的和差代数表示,力求简明。阐述不等式, 本课选择天平和三角形路线图两个模型。借助天平刻画两端托盘里的物体质量关系,不平衡就可以用不等式表达。演示形象直观,数量关系显而易见。三角形路线图, 从几何图形的角度引出三角形三边关系。即三角形任意两边之和大于第三边,任意两边之差小于第三边。同样存在不等关系。天平是等式与方程本质特征的绝妙化身。天平平衡,意味着存在相等的数量关系,这与等式或方程反映两件事情等价不谋而合。在一定程度上提醒我们, 不能习惯性地把“等号”看成执行运算或

16、赋值结果的表示,它是描述两件事情等价的关系符号。含有“等号”,是等式模型的标志。引入未知量后,联立已知量和未知量来寻求未知量的等式模型,就是方程。分类以比较为基础, 有助于人们清晰地认识事物的特征。需要缜密、全面的视角看问题,注重观察、分析、抽象和概括,关键是选好标准。本课选择“是不是等式,有没有未知数”作标准,对9 道式子进行分类和再分类操作,得出4 组名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 6 页,共 8 页 - - - - - - - - - 名师精编

17、优秀教案不同类型,再分组研究,最终引出方程,从而渗透数学分类思想。一般而论,把数学知识转化成数学问题,寓于习题中,不仅巩固新知,还成为生长点,激发出新的认识与想法。这种处理是一种有效的模式。呈现 8 道式子, 逐一判断出等式或方程,目的是强化理解两者的特征,也揭示两者的联系。 等式与方程是包含和包含于的关系, 等式包含方程, 方程包含于等式。 数学上常用集合图表示。 因此,“所有方程都是等式,但等式不一定是方程”结论成立。而学生对两者关系“部分与整体”的理解或尝试创作图画表示,都初步体现集合思想。两则数学史料介绍, 前一则涉及李冶 测圆海镜 中“天元术”和朱世杰四元玉鉴中“四元术” ,侧重于我

18、国古代数学家对未知量的描述;后一则提及古埃及纸草卷、中国九章算术与法国笛卡尔的成就,着眼于人类对方程漫长发展历程的探究。引入数学史, 旨在体现方程知识的传承性,感受无数数学家的卓越贡献。“五雀六燕”为九章算术方程中的经典名题。它借助天平刻画燕雀之间的质量关系,明确数量间存在着相等或不等关系。等量关系存在,才能据此列方程。实际上,它是由 2 道一元一次方程构成的方程组。 本例放在全课结尾,一是感知方程的充要条件, 即寻找并确立等量关系; 另一是感知古代数学的辉煌成就,即重实用与重算法。“写方程”检验学生的概念理解。要避免出现形如“5+7=x”的式子。该式用算术方法可求,它不是方程。 方程中未知数

19、要参与运算, 避免单独放在等号一边。四则运算仅提供一种算法, 方程则展示数学思想。 这从概念应用上可知。“看图列方程”为揭示方程的本质。4 幅情境图涉及生活中质量、价钱与容积,前两图是例题变式练习,仍用天平图表示。 “用方程表示数量关系”为说明方程的深层含义。涉及一般实际问题情境,数量关系复杂,更能突出方程的实际价值。这2 题都要求学生尝试抽象出数量关系,再建立方程。在经历中感受方程与实际问题的联系,领悟数学建模思想的过程,实现从算术思维向代数思维过渡。本课遵循 3 大板块设计: 创设情境,经历探究分类操作,形成概念巩固反馈,总结拓展。第1 板块的知识储备是“用字母表示数”与“三角形三边关系”

20、 。第 2 板块渗透分类思想与集合思想。从代数式、不等式到等式、方程,知识点的层进水到渠成,自然过渡。每一环节的处理,也体现“双基”,小坡度、小步走,以顺应知识的内在逻辑与学生的思维探究。适时总结则体现集成化与模块化思想。及时跟进课堂节奏,整合知识网络,构建学生认知体系,以形成长期记忆点。本课分类探究、 概念形成以及习题设计等都凸显这一点。但“五雀六燕”与前面衔接稍显突兀, 恰巧放于结尾。最后一句总结“方程思想是永恒的好数学” ,是对方程的最佳诠释与赞誉。另外,本课也参考周永彬、贲友林、汤卫红、刘松名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 7 页,共 8 页 - - - - - - - - - 名师精编优秀教案等老师的设计理念,受益良多,在此谨表谢意。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 8 页,共 8 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁