《高二数学-直线与方程典型习题(学生版).doc》由会员分享,可在线阅读,更多相关《高二数学-直线与方程典型习题(学生版).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流高二数学-直线与方程典型习题(学生版).精品文档.【知识点一:倾斜角与斜率】(1)直线的倾斜角关于倾斜角的概念要抓住三点:1、与x轴相交;2、x轴正向;3、直线向上方向。直线与轴平行或重合时,规定它的倾斜角为倾斜角的范围(2)直线的斜率直线的斜率就是直线倾斜角的正切值,而倾斜角为的直线斜率不存在.记作 当直线与轴平行或重合时, , 当直线与轴垂直时, ,不存在.经过两点的直线的斜率公式是每条直线都有倾斜角,但并不是每条直线都有斜率.(3)求斜率的一般方法:已知直线上两点,根据斜率公式求斜率;已知直线的倾斜角或的某种三角函数根据来求斜率;(4)
2、利用斜率证明三点共线的方法:已知,若,则有A、B、C三点共线。【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线,其斜率分别为,则有特别地,当直线的斜率都不存在时,的关系为平行(2)两条直线垂直:如果两条直线斜率存在,设为,则有注:两条直线垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。如果中有一条直线的斜率不存在,另一条直线的斜率为0时,互相垂直.(2)线段的中点坐标公式【知识点四 直线的交点坐标与距离】(1)两条直线的交点设两条直线的方程是, 两条直线的交点坐标就是方程组的解。若方程组有
3、唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行.(2)几种距离两点间的距离:平面上的两点间的距离公式特别地,原点与任一点的距离点到直线的距离:点到直线的距离两条平行线间的距离:两条平行线间的距离注:1求点到直线的距离时,直线方程要化为一般式;2求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算。需要更多的高考数学复习资料精讲精练【例1】已知,直线过原点O且与线段AB有公共点,则直线的斜率的取值范围是()【例2】在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有() A 1条 B 2条 C
4、 3条 D 4条【例3】方程所表示的图形的面积为_。【例4】设,则直线恒过定点 【例5】一直线过点,并且在两坐标轴上截距之和为,这条直线方程是_【例6】已知A(1,2),B(3,4),直线l1:x=0,l2:y=0和l3:x+3y1=0、设Pi是li(i=1,2,3)上与A、B两点距离平方和最小的点,则P1P2P3的面积是_【例7】已知直线(a2)y=(3a1)x1,为使这条直线不经过第二象限,则实数a的范围是_ _【例8】过点作一直线,使它与两坐标轴相交且与两轴所围成的三角形面积为。【例9】已知点,点在直线上,求取得最小值时点的坐标。【例10】求函数的最小值。【例11】直线l过点P(2,1),且分别与x ,y轴的正半轴于A,B两点,O为原点(1) 求AOB面积最小值时l的方程; (2)|PA|PB|取最小值时l的方程【例12】已知直线l:kxy12k0(1)证明:直线l过定点;(2)若直线l交x负半轴于A,交y正半轴于B,AOB的面积为S,试求S的最小值并求出此时直线l的方程。