《中考数学专题复习导学案《尺规作图》(含答案).doc》由会员分享,可在线阅读,更多相关《中考数学专题复习导学案《尺规作图》(含答案).doc(54页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date中考数学专题复习导学案尺规作图(含答案)中考数学专题复习导学案尺规作图(含答案)中考数学专题练习尺规作图【知识归纳】一)尺规作图1定义只用没有刻度的 和 作图叫做尺规作图2步骤根据给出的条件和求作的图形,写出已知和求作部分; 分析作图的方法和过程;用直尺和圆规进行作图;写出作法步骤,即作法二)五种基本作图1作一条线段等于已知线段;2作一个角等于已知角;3作已知角的平分
2、线;4过一点作已知直线的垂线;5作已知线段的垂直平分线三)基本作图的应用1利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形2与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆)(2)作三角形的内切圆【基础检测】1如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P若点P的坐标为(2a,b+1),则a与b的数量关系为()Aa=b B2a+b=1
3、C2ab=1D2a+b=12.如图,已知ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( )ABCA2.5cm B3.0cm C3.5cm D4.0cm3.如图,已知ABC,BAC=90,请用尺规过点A作一条直线,使其将ABC分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把ABC绕点C逆时针旋转90后得到A1B1C(1)画出A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,ABC
4、所扫过的面积5如图,在边长为1个单位长度的小正方形组成的1212网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形ABCD6已知:线段a及ACB求作:O,使O在ACB的内部,CO=a,且O与ACB的两边分别相切7如图,OA=2,以点A为圆心,1为半径画A与OA的延长线交于点C,过点A画OA的垂线,垂线与A的一个交点为B,连接BC (1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:以点为圆心,以线段的长为半径画弧,与
5、射线BA交于点D,使线段OD的长等于连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由【达标检测】一、选择题1如图,在ABC中,B=55,C=30,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则BAD的度数为()A65B60C55D452.如图,已知钝角ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧;步骤2:以B为圆心,BA为半径画弧,将弧于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是( )第10题图ABH垂直分分线段ADBAC平分BADCSABC=BCAH DAB=AD二
6、、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB若FA=5,则FB= 4.如图,在ABC中,C=90,B=30,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是 。AD是BAC的平分线;ADC=60;点D在AB的中垂线上;SDAC:SABC=1:3三、解答题5.(12分)图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图(88的格点图
7、是由边长为1的小正方形组成)(1)求1路车从A站到D站所走的路程(精确到0.1);(2)在图2、图3和图4的网格中各画出一种从A站到D站的路线图(要求:与图1路线不同、路程相同;途中必须经过两个格点站;所画路线图不重复)6.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上7.如图,已知A
8、BC,BAC=90,请用尺规过点A作一条直线,使其将ABC分成两个相似的三角形(保留作图痕迹,不写作法)8. 如图,已知BD是矩形ABCD的对角线(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明)(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由9.如图,方格中,每个小正方形的边长都是单位1,ABC在平面直角坐标系中的位置如图(1)画出将ABC向右平移2个单位得到A1B1C1;(2)画出将ABC绕点O顺时针方向旋转90得到的A2B2C2;(3)求A1B1C1与A2B2C2重合部分的面积【知识归纳答案】一)尺规作图1定义只用没有刻度的直
9、尺和圆规作图叫做尺规作图2步骤根据给出的条件和求作的图形,写出已知和求作部分;分析作图的方法和过程;用直尺和圆规进行作图;写出作法步骤,即作法二)五种基本作图1作一条线段等于已知线段;2作一个角等于已知角;3作已知角的平分线;4过一点作已知直线的垂线;5作已知线段的垂直平分线 三)基本作图的应用1利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形2与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆)(2)作三角形的内切圆【基础检测答案】1)如图
10、,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P若点P的坐标为(2a,b+1),则a与b的数量关系为()Aa=b B2a+b=1C2ab=1D2a+b=1【解析】作图基本作图;坐标与图形性质;角平分线的性质根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系【解答】解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2
11、a+b=1,故选:B【点评】此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|2.如图,已知ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( )ABCA2.5cm B3.0cm C3.5cm D4.0cm【答案】B【解析】首先根据题意画出图形,由“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形,再根据平行四边形的性质对角线相等,得出ADBC最后利用刻度尺进行测量即可【方法指导】此题主要考查了复杂作图以及平
12、行四边形的判定和性质,关键是正确理解题意,画出图形3.如图,已知ABC,BAC=90,请用尺规过点A作一条直线,使其将ABC分成两个相似的三角形(保留作图痕迹,不写作法)【考点】作图相似变换【分析】过点A作ADBC于D,利用等角的余角相等可得到BAD=C,则可判断ABD与CAD相似【解答】解:如图,AD为所作4. (8分)如图,在边长为1的正方形网格中,ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把ABC绕点C逆时针旋转90后得到A1B1C(1)画出A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,ABC所扫过的面积【考点】作图-旋转变换;扇形面积的计算
13、【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据ABC扫过的面积等于扇形CAA1的面积与ABC的面积和,然后列式进行计算即可【解答】解:(1)所求作A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(1,4),点B1的坐标为(1,4);(2)AC=,ACA1=90在旋转过程中,ABC所扫过的面积为:S扇形CAA1+SABC=+32=+35(8分)如图,在边长为1个单位长度的小正方形组成的1212网格中,给出了四边形ABCD的
14、两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC (1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形ABCD【考点】作图-平移变换【分析】(1)画出点B关于直线AC的对称点D即可解决问题(2)将四边形ABCD各个点向下平移5个单位即可得到四边形ABCD【解答】解:(1)点D以及四边形ABCD另两条边如图所示(2)得到的四边形ABCD如图所示6(2016.山东省青岛市,4分)已知:线段a及ACB求作:O,使O在ACB的内部,CO=a,且O与ACB的两边分别相切【考点】作图复杂作图【分析】首先作出ACB的平分线CD
15、,再截取CO=a得出圆心O,作OECA,由角平分线的性质和切线的判定作出圆即可 【解答】解:作ACB的平分线CD,在CD上截取CO=a,作OECA于E,以O我圆心,OE长为半径作圆;如图所示:O即为所求7如图,OA=2,以点A为圆心,1为半径画A与OA的延长线交于点C,过点A画OA的垂线,垂线与A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由【考点】作图复杂作图【分析】(1)由圆的半径为1,可得出AB=AC
16、=1,结合勾股定理即可得出结论;(2)结合勾股定理求出AD的长度,从而找出点D的位置,根据画图的步骤,完成图形即可;根据线段的三等分点的画法,结合OA=2AC,即可得出结论【解答】解:(1)在RtBAC中,AB=AC=1,BAC=90,BC=故答案为:(2)在RtOAD中,OA=2,OD=,OAD=90,AD=BC以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于依此画出图形,如图1所示故答案为:A;BCOD=,OP=,OC=OA+AC=3,OA=2,故作法如下:连接CD,过点A作APCD交OD于点P,P点即是所要找的点依此画出图形,如图2所示【达标检测答案】一、选
17、择题1)如图,在ABC中,B=55,C=30,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则BAD的度数为()A65B60C55D45【考点】线段垂直平分线的性质【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到C=DAC,求得DAC=30,根据三角形的内角和得到BAC=95,即可得到结论【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故C=DAC,C=30,DAC=30,B=55,BAC=95,BAD=BACCAD=65,故选A【点评】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线
18、段垂直平分线的性质是解题关键 2.如图,已知钝角ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧;步骤2:以B为圆心,BA为半径画弧,将弧于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是( )第10题图ABH垂直分分线段ADBAC平分BADCSABC=BCAH DAB=AD答案:A解析:AD相当于一个弦,BH、CHAD;B、D两项不一定;C项面积应除以2。知识点:尺规作图二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB若FA=5,则F
19、B=5 【考点】作图基本作图;线段垂直平分线的性质【分析】根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题 【解答】解:由题意直线CD是线段AB的垂直平分线,点F在直线CD上,FA=FB,FA=5,FB=5故答案为54.如图,在ABC中,C=90,B=30,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是 。AD是BAC的平分线;ADC=60;点D在AB的中垂线上;SDAC:SABC=1:3【解析】根据作图的过程可以判定AD是BAC的
20、角平分线;利用角平分线的定义可以推知CAD=30,则由直角三角形的性质来求ADC的度数;利用等角对等边可以证得ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比【解答】解:根据作图的过程可知,AD是BAC的平分线故正确;如图,在ABC中,C=90,B=30,CAB=60又AD是BAC的平分线,1=2=CAB=30,3=902=60,即ADC=60故正确;1=B=30,AD=BD,点D在AB的中垂线上故正确;如图,在直角ACD中,2=30,CD=AD,BC=CD+BD=AD+AD=AD
21、,SDAC=ACCD=ACADSABC=ACBC=ACAD=ACAD,SDAC:SABC=ACAD: ACAD=1:3故正确综上所述,正确的结论是:【点评】本题考查了角平分线的性质、线段垂直平分线的性质以及作图基本作图解题时,需要熟悉等腰三角形的判定与性质 三、解答题5.(12分)图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图(88的格点图是由边长为1的小正方形组成)(1)求1路车从A站到D站所走的路程(精确到0.1);(2)在图2、图3和图4的网格中各画出一种从A站到D站的路线图(要求:与图1路线不同、路程相同;途中必须经过两个格点站;所画路线图不重复)【
22、考点】作图应用与设计作图;勾股定理的应用【分析】(1)先根据网格求得AB、BC、CD三条线段的长,再相加求得所走的路程的近似值;(2)根据轴对称、平移或中心对称等图形的变换进行作图即可【解答】解:(1)根据图1可得:,CD=3A站到B站的路程=9.7;(2)从A站到D站的路线图如下:6.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6
23、的矩形ABCD,且点B和点D均在小正方形的顶点上 【考点】作图-轴对称变换【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4=4;(2)如图2所示:四边形ABCD即为所求7.如图,已知ABC,BAC=90,请用尺规过点A作一条直线,使其将ABC分成两个相似的三角形(保留作图痕迹,不写作法)【考点】作图相似变换【分析】过点A作ADBC于D,利用等角的余角相等可得到BAD=C,则可判断ABD与CAD相似【解答】解:如图,AD为所作8.如图,已知BD是矩形ABCD的对角线(
24、1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明)(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由【考点】矩形的性质;作图基本作图【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,DEF=BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:EF
25、垂直平分BD,BE=DE,DEF=BEF,ADBC,DEF=BFE,BEF=BFE,BE=BF,BF=DF,BE=ED=DF=BF,四边形BEDF为菱形9如图,方格中,每个小正方形的边长都是单位1,ABC在平面直角坐标系中的位置如图(1)画出将ABC向右平移2个单位得到A1B1C1;(2)画出将ABC绕点O顺时针方向旋转90得到的A2B2C2;(3)求A1B1C1与A2B2C2重合部分的面积【考点】作图-旋转变换;作图-平移变换【分析】(1)将ABC向右平移2个单位即可得到A1B1C1(2)将ABC绕点O顺时针方向旋转90即可得到的A2B2C2(3)B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图,求出直线A1B1,B2C2,A2B2,列出方程组求出点E、F坐标即可解决问题【解答】解:(1)如图,A1B1C1为所作;(2)如图,A2B2C2为所作;(3)B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图,B2(0,1),C2(2,3),B1(1,0),A1(2,5),A2(5,0),直线A1B1为y=5x5,直线B2C2为y=x+1,直线A2B2为y=x+1,由解得,点E(1.5,2.5),由解得,点F(,)SBEF=A1B1C1与A2B2C2重合部分的面积为-