七年级数学下集体备课---副本.doc

上传人:豆**** 文档编号:23990145 上传时间:2022-07-03 格式:DOC 页数:77 大小:215KB
返回 下载 相关 举报
七年级数学下集体备课---副本.doc_第1页
第1页 / 共77页
七年级数学下集体备课---副本.doc_第2页
第2页 / 共77页
点击查看更多>>
资源描述

《七年级数学下集体备课---副本.doc》由会员分享,可在线阅读,更多相关《七年级数学下集体备课---副本.doc(77页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date七年级数学下集体备课-副本古阳中学教研组集体备课教案数学教研组集体备课教案课题名:七年级下册第五单元课 时:第4课时主备人:向汉龙时 间:2015年3月12日 小组成员:向迎春 宋贻绣 向汉龙 唐 精初稿课题:5.1.3同位角、内错角、同旁内角【学习目标】1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛2. 通过比较、观察、掌握

2、同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.【学习重点】同位角、内错角、同旁内角的识别。【学习难点】较复杂图形中同位角、内错角、同旁内角的识别。【导学】1.指出右图中所有的邻补角和对顶角?2. 图中的1与5,3与5,3与6 是邻补角或对顶角吗?若都不是,请自学课本P6内容后回答它们各是什么关系的角?【研学】1.如图(1),将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成“直线 和直线 与直线 相交” 也可以说成“两条直线 , 被第三条直线 所截”.构成了小于平角的角共有 个,通常将这种图形称作为“三线八角”。其中直线 , 称为两被截线,直线 称为截线

3、。2. 如图(3)是“直线 , 被直线 所截”形成的图形(1)1与5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如“ ” 字型.具有这种关系的一对角叫同位角。(2)3与5这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫内错角。(3)3与6这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫同旁内角。3.找出图(3)中所有的同位角、内错角、同旁内角。4.讨论与交流:(1)“同位角、内错角、同旁内角”与“邻补角、对顶角”在识别方法上有什么区别?(2)归纳总结同位角、内错角、同旁内角的特征: 同位角:“F” 字型,“

4、同旁同侧”“三线八角” 内错角:“Z” 字型,“之间两侧” 同旁内角:“U” 字型,“之间同侧” 【运用举例】例1.如图(2)中1与2,3与4, 1与4分别是哪两条直线被哪一条直线所截形成的什么角?例2.课本P7的例题【巩固练习】课本P7练习1,2【检学】1.如图(4),下列说法不正确的是( )A、1与2是同位角 B、2与3是同位角C、1与3是同位角 D、1与4不是同位角2.如图(5),直线AB、CD被直线EF所截,A和 是同位角,A和 是内错角,A和 是同旁内角.3.如图(6), 直线DE截AB, AC, 构成八个角: 指出图中所有的同位角、内错角、同旁内角.A与5, A与6, A与8, 分

5、别是哪一条直线截哪两条直线而成的什么角?4.如图(7),在直角ABC中,C90,DEAC于E,交AB于D .指出当BC、DE被AB所截时,3的同位角、内错角和同旁内角.试说明123的理由.(提示:三角形内角和是1800) 讨 论 稿讨论要点记录: 宋贻绣老师:这节课的教学设计,要力求注意问题的层次性,由浅人深,逐层递进,充分发挥学生之间自主探索与合作交流的过程。将左右手的大拇指和食指组成三种角。 向迎春老师:帮助他们在自主探索与合作交流的过程,展现了一种课堂教学的新型师生关系,让学生通过“模型”理解同位角.内错角.同旁内角的位置区别。增加小结部分,让学生理解三种角的关系。 唐精老师:以生活中的

6、问题,向学生提供充分形成思想的活动机会,激发学生的学习积极性,加强经典练习。定稿课题:5.1.3同位角、内错角、同旁内角【学习目标】1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.【学习重点】同位角、内错角、同旁内角的识别。【学习难点】较复杂图形中同位角、内错角、同旁内角的识别。【导学】1.指出右图中所有的邻补角和对顶角?2. 图中的1与5,3与5,3与6 是邻补角或对顶角吗?若都不是,请自学课本P6内容后回答它们各是什么关系的角?【研学】1.如图(1)

7、,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成“直线 和直线 与直线 相交” 也可以说成“两条直线 , 被第三条直线 所截”.构成了小于平角的角共有 个,通常将这种图形称作为“三线八角”。其中直线 , 称为两被截线,直线 称为截线。2. 如图(3)是“直线 , 被直线 所截”形成的图形(1)1与5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如“ ” 字型.具有这种关系的一对角叫同位角。(2)3与5这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫内错角。(3)3与6这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具

8、有这种关系的一对角叫同旁内角。3.找出图(3)中所有的同位角、内错角、同旁内角。4.讨论与交流:(1)“同位角、内错角、同旁内角”与“邻补角、对顶角”在识别方法上有什么区别?(2)归纳总结同位角、内错角、同旁内角的特征: 同位角:“F” 字型,“同旁同侧”“三线八角” 内错角:“Z” 字型,“之间两侧” 同旁内角:“U” 字型,“之间同侧” 【运用举例】例1.如图(2)中1与2,3与4, 1与4分别是哪两条直线被哪一条直线所截形成的什么角?例2.课本P7的例题【巩固练习】课本P7练习1,2【小结】 两条直线被第三条直线所截构成的“三线八角”中,判断同位角、内错角、同旁内角的三个步骤:一看角的顶

9、点 二看角的两边 三看角的方位但这“三看”又离不开主线“截线”的确定【拓展延伸】1、请辩别内错角、同位角、同旁内角之间的区别和联系2、做一做将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角两食指相对成一条直线,两个大拇指同向的时候组成同旁内角两手的拇指和食指如何组合得到同位角?【板书】同位角、内错角、同旁内角同位角概念内错角概念 学生练习同旁内角概念【检学】1.如图(4),下列说法不正确的是( )A、1与2是同位角 B、2与3是同位角C、1与3是同位角 D、1与4不是同位角2.如图(5),直线AB、CD被直线EF所截,A和 是同位角,A和 是内错角,A

10、和 是同旁内角.3.如图(6), 直线DE截AB, AC, 构成八个角: 指出图中所有的同位角、内错角、同旁内角.A与5, A与6, A与8, 分别是哪一条直线截哪两条直线而成的什么角?4.如图(7),在直角ABC中,C90,DEAC于E,交AB于D .指出当BC、DE被AB所截时,3的同位角、内错角和同旁内角.试说明123的理由.(提示:三角形内角和是1800)数学教研组集体备课教案课题名:七年级下册第五单元课 时:第7课时主备人:向汉龙时 间:2015年3月19日 小组成员:向迎春 宋贻绣 向汉龙 唐 精初稿课题:5.2.1平行线【学习目标】1.了解平行线的概念、平面内两条直线的相交和平行

11、的两种位置关系, 知道平行公理以及平行公理的推论.2.会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.【学习重点】探索和掌握平行公理及其推论.【学习难点】对平行线本质属性的理解,用几何语言描述图形的性质.【学前准备】分别将木条a、b与木条c钉在一起,做成图示的教具.【问题探索】1.两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?2,在平面内,两条直线除了相交外,还有别的位置关系吗?请同学门观察黑板相对的两条横及格本中两条横线,若把他们向两方延长,看成直线,他们还是相交直线吗?3把三根木条看成三条直线,观察三根木条之间的关系,有几种可能性?4自我演

12、示. 顺时针转动木条b两圈,然后思考:把a、b 想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中, 有没有直线b与a不相交的位置?5.同学交流并形成共识.转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a 的交点就会从A点的右边又转动A点的左边可以想象一定存在一个直线b的位置,它与直线a左右两旁都 如下图【导学】-平行线定义、表示法1.结合演示的结论,用自己的语言描述平行线的认识:平行线是同一 的两条直线平行线是 交点的两条直线2尝试用数学

13、语言描述平行定义 特别注意:直线a与b是平行线,记作“ ”,这里“ ”是平行符号.思考: 如何确定两条直线的位置关系?.【研学】-画图、观察、探索平行公理及平行公理推论1.在转动教具木条b的过程中,有几个位置能使b与a平行?2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?3.观察画图、归纳平行公理及推论. (1)对照垂线的第一性质说出画图所得的结论.平行公理: (2)比较平行公理和垂线的第一条性质. 共同点:都是“ ”,这表明与已知直线平行或垂直的直线存在并且是 的. 不同点:平行公理中所过的

14、“一点”要在已知直线 ,两垂线性质中对“一点”没有限制,可在直线 ,也可在直线 .4.探索平行公理的推论.(1)直观判定过B点、C点的a的平行线b、c是互相 .(2)从直线b、c产生的过程说明直线b直线c.(3)用三角尺与直尺用平推方法验证bc.(4)用数学语言表达这个结论 用符号语言表达为:如果 那么 (5)简单应用. 将一张长方形纸片对折两次,得到三条折痕,这三条折痕有什么关系,请说明理由。【检学】 一、填空题.1.在同一平面内,两条直线的位置关系有_2、两条直线L1与L2相交点A,如果L1L,那么L2与L( ),这是因为( )。3.在同一平面内,一条直线和两条平行线中一条直线相交,那么这

15、条直线与平行线中的另一边必_.4.两条直线相交,交点的个数是_,两条直线平行,交点的个数是_个.二、判断题.1.不相交的两条直线叫做平行线.( )2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )3.过一点有且只有一条直线平行于已知直线.( )三、解答题.1.读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况. 讨 论 稿讨论要点记录:向迎春老师:所谓“数学化”是指如何由实际问题

16、建构出它的数学模型,并应用数学的知识和方法去解决问题。这节课的教学设计,要力求注意问题的层次性,由浅人深,逐层递进,学生的数学学习应经历“现实题材数学问题数学模型数学知识和方法”的过程。 宋贻绣老师:学生需要对每一个数学概念构造自己的理解,使得教的作用不再是演讲、解释,或者企图去传送知识,而是为促使学生进行心智建构创设学习环境和条件。这种教学方法的关键,是将每一个数学概念分解成许多发展性的步骤,这些步骤的确定要基于对学生的观察和谈话。 唐精老师:帮助他们在自主探索与合作交流的过程,展现了一种课堂教学的新型师生关系。加强经典练习的讲解。定稿课题:5.2.1平行线【学习目标】1.了解平行线的概念、

17、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.2.会用符号语言表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.【学习重点】探索和掌握平行公理及其推论.【学习难点】对平行线本质属性的理解,用几何语言描述图形的性质.【学前准备】分别将木条a、b与木条c钉在一起,做成图示的教具.【问题探索】1.两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?2,在平面内,两条直线除了相交外,还有别的位置关系吗?请同学门观察黑板相对的两条横及格本中两条横线,若把他们向两方延长,看成直线,他们还是相交直线吗?3把三根木条看成三条直线,观察三根木条之间的关

18、系,有几种可能性?4自我演示. 顺时针转动木条b两圈,然后思考:把a、b 想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中, 有没有直线b与a不相交的位置?5.同学交流并形成共识.转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a 的交点就会从A点的右边又转动A点的左边可以想象一定存在一个直线b的位置,它与直线a左右两旁都 如下图【导学】-平行线定义、表示法1.结合演示的结论,用自己的语言描述平行线的认识:平行线是同一 的两条直线平行线是

19、交点的两条直线2尝试用数学语言描述平行定义 特别注意:直线a与b是平行线,记作“ ”,这里“ ”是平行符号.思考: 如何确定两条直线的位置关系?.【研学】-画图、观察、探索平行公理及平行公理推论1.在转动教具木条b的过程中,有几个位置能使b与a平行?2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?3.观察画图、归纳平行公理及推论. (1)对照垂线的第一性质说出画图所得的结论.平行公理: (2)比较平行公理和垂线的第一条性质. 共同点:都是“ ”,这表明与已知直线平行或垂直的直线存在并且是 的.

20、 不同点:平行公理中所过的“一点”要在已知直线 ,两垂线性质中对“一点”没有限制,可在直线 ,也可在直线 .4.探索平行公理的推论.(1)直观判定过B点、C点的a的平行线b、c是互相 .(2)从直线b、c产生的过程说明直线b直线c.(3)用三角尺与直尺用平推方法验证bc.(4)用数学语言表达这个结论 用符号语言表达为:如果 那么 (5)简单应用. 将一张长方形纸片对折两次,得到三条折痕,这三条折痕有什么关系,请说明理由。【课时小结】本节课我们主要学习了平行线的特征及其应用,还了解了直线平行的条件与平行线的特征的区别.平行线的特征:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁

21、内角互补. 这些特征要掌握,还有一些特征同学们只需了解即可.如:两条平行线中的一条直线与第三条直线垂直,那么另一条直线也与第三条直线垂直.【板书设计】5.2 平行线的特征一、平行线的特征两直线平行【检学】 一、填空题.1.在同一平面内,两条直线的位置关系有_2、两条直线L1与L2相交点A,如果L1L,那么L2与L( ),这是因为( )。3.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必_.4.两条直线相交,交点的个数是_,两条直线平行,交点的个数是_个.二、判断题.1.不相交的两条直线叫做平行线.( )2.如果一条直线与两条平行线中的一条直线平行, 那么它与

22、另一条直线也互相平行.( )3.过一点有且只有一条直线平行于已知直线.( )三、作图题.1.读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.四.解答题:1如图,ABCD,1102,求2、3、4、5的度数,并说明根据?2如图,EF过ABC的一个顶点A,且EFBC,如果B40,275,那么1、3、C、BACBC各是多少度,并说明依据?数学教研组集体备课教案课题名:七年级下册第五单元课 时:第2课时主备人:向汉龙时

23、 间:2015年3月3日 小组成员:向迎春 宋贻绣 向汉龙 唐 精初稿课题:5.1.2 垂线(1)【学习目标】1理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。2掌握点到直线的距离的概念,并会度量点到直线的距离。3掌握垂线的性质,并会利用所学知识进行简单的推理。【学习重点】垂线的定义及性质。【学习难点】垂线的画法【学具准备】相交线模型,三角尺,量角器 一、按照运动的思维方式提出问题平面上的两条直线有哪些位置关系?(两种,平行和相交)学生回答后,教师打出投影的两个图 (如图29(1),29(2)在相交直线形成的四个角中,按照两个角的关系分类,有哪两种类型的角?(对顶角和邻补角)

24、两条直线所夹的角中,如果按照角的大小来分类,又有哪几种? (三种:锐角、直角、钝角) (这时老师将直线CD继续运动得到(3)和(4)在此基础上,教师指出:图29(3)是两条直线相交的一种特殊情况,它在生活、生产实际中应用比 较广,例如:书本相邻的两条边、窗户框相邻的两边、红十字等,因此今天我们就来研究这种特殊情况(板书课题)二、垂线的有关概念在感性认识的基础上,引导学生得到关于垂线的一些概念1定义:当两条直线相交所成的四个角中,有一个是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足2符号:“”读作“垂直于”如ABCD于O,含义:直线AB与直线CD垂直,垂足

25、是O3对定义的理解: (1)在垂直的定义中要强调只有一个角是直角就可以了,不必说四个角都是直角,因为其它三个直角都可推出来 (2)两条直线互相垂直,是指两条直线而言因此,说到垂线,一定是两条直线的位置关系(3)定义具有双重性,既是判定垂直的方法,也是垂直的性质方法,在具体应用时要注意书写格式如图210因为ABCD于O,(已知)所以1=90(垂直定义或垂直性质)因为AOC=90,(已知)所以ABCD于O(垂直定义或垂直的判定)三、通过实践活动,引导学生发现垂线的第一个性质1教师先向学生提出一个实际问题怎样正确量出跳远的成绩?2引导学生将实际问题转化为数学问题,对做得比较好的学生,让他到黑板上画图

26、,教师纠正并给出图211师生共同指出,BD为起跳线,A为跳远时脚落的地点3教师指出:这个实际问题实质上就是转化为“从直线外一点画出已知直线的垂线问题”那么,怎样用你手中的三角板画出这条垂线呢?4在学生画出垂线的基础上,教师总结出用三角板画垂线的基本方法强调用两条直角边“一贴”:贴住已知直线,“一靠”:靠住已知点再画线并引导学生思考:这样画出的为何是已知直线的垂线?5引导学生在作垂线的实践活动中,发现垂线的性质(1)如图212(1)中,过点A,作直线BD的垂线,在图212(2)中,过A点分别作BD和DE的垂线(2)发现垂线的性质在学生熟练地作出各条垂线之后,教师继续提问:(或以其它形式)过A点还

27、能作出别的垂线吗?在学生回答的基础上,教师引导学生发现以下两个结论:过A点作BD或DE的垂线有没有,(有)过A点作BD或DE的垂线有几条,(只一条)四、小结:师生共同总结出本节课所学的内容1理解垂线的意义2根据垂线的意义,过一点画一条直线的垂线3理解垂线的第一性质方法五、作业 讨 论 稿讨论要点记录: 宋贻秀老师:这节课的教学设计,要力求注意问题的层次性,由浅人深,逐层递进,从基本到简单开放,以问题串的形式让不同的学生都能有所收获。这节课是认识垂直是一中特殊的相交与平行的关系,所以讲时应该放慢速度。 向迎春老师:从教材上看,这节课安排学生动手操作的比较多,所以这处理这些环节时,应该注意掌握时间

28、和学生动手操作时的目的,有时学生会不知道要得到什么。所以在让学生做时,一定要让学生明白所做的目的。 唐精老师:其次在这节课的课堂教学中,教师的角色发生了转变,由过去那种课堂教学的主宰转变为学生学习活动的组织者、引导者和合作者,让学生充当数学学习的主人 定稿课题:5.1.2 垂线(1)【学习目标】1理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。2掌握点到直线的距离的概念,并会度量点到直线的距离。3掌握垂线的性质,并会利用所学知识进行简单的推理。【学习重点】垂线的定义及性质。【学习难点】垂线的画法【学具准备】相交线模型,三角尺,量角器【导学】1如图,若1=60,那么2=_、3=

29、_、4=_ 2改变上图中1的大小,若1=90,请画出这种图形,并求出此时2、3、4的大小。【研学】1.阅读课本P3的内容,回答上面所画图形中两条直线的关系是_,知道两条直线互相_是两条直线相交的特殊情况。2. 用语言概括垂直定义两条直线相交,所成四个角中有一个角是_时,我们称这两条直线_其中一条直线是另一条的_,他们的交点叫做_。3垂直的表示方法:垂直用符号“”来表示,若“直线AB垂直于直线CD, 垂足为O”,则记为_,并在图中任意一个角处作上直角记号,如下图。4.垂直的推理应用:(1)AOD=90 ( )ABCD ( )(2) ABCD ( ) AOD=90( )5垂直的生活应用观察教室里的

30、课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象?找一找:在你身边,还能发现哪些“垂直”的实例?【画图实践】1用三角尺或量角器画已知直线L的垂线.(1)已知直线L,画出直线L的垂线,能画几条? L小组内交流,明确直线L的垂线有_条,即存在,但位置有不_性。(2)怎样才能确定直线L的垂线位置呢?在直线L上取一点A,过点A画L的垂线, 能画几条?再经过直线L外一点B画直线L的垂线,这样的垂线能画出几条? B A L L从中你能得出什么结论? _ 2变式训练,请完成课本P5练习第2题的画图。画完图后,归纳总结:画一条射线或线段的垂线, 就是画它们所在_的垂线.【反思总结】本节课你

31、你有那些收获?还有什么疑难需老师或同学帮助解决? 【检学】(有困难同学可以选做)(一)判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).(二)填空题.1.如图1,OAOB,ODOC,O为垂足,若AOC=35,则BOD=_.2.如图2,AOBO,O为垂足,直线CD过点O,且BOD=2AOC,则BOD=_.3.如图3,直线AB、CD相交于点O,若EOD=40,BOC=130,那么射线OE 与直线AB的位置关系是_.(三)解答题.1.已知钝角AOB,点D在射线OB上. (1)画直线DEOB (2)画直线DFOA,垂足为F. 2.已知:如图,直线AB,射线OC交于点O,OD平分BOC,OE平分AOC.试判断OD 与OE的位置关系.3.你能用折纸方法过一点作已知直线的垂线吗?-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁