《高中数学吧必修2第四章知识点总结.doc》由会员分享,可在线阅读,更多相关《高中数学吧必修2第四章知识点总结.doc(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学吧必修2第四章知识点总结高中数学吧必修第四章知识点总结高中数学吧必修第四章知识点总结4.1.1 圆的标准方程1、圆的标准方程:圆心为A(a,b),半径为r的圆的方程2、点与圆的关系的判断方法:(1),点在圆外 (2)=,点在圆上(3),点在圆内4.1.2 圆的一般方程1、圆的一般方程: 2、圆的一般方程的特点: (1)x2和y2的系数相同,不等于0没有xy这样
2、的二次项 (2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系设直线:,圆:,圆的半径为,圆心到直线的距离为,则判别直线与圆的位置关系的依据有以下几点:(1)当时,直线与圆相离;(2)当时,直线与圆相切;(3)当时,直线与圆相交;4.2.2 圆与圆的位置关系两圆的位置关系设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:(1)当时,圆与圆相离;(2)当
3、时,圆与圆外切;(3)当时,圆与圆相交;(4)当时,圆与圆内切;(5)当时,圆与圆内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论4.3.1空间直角坐标系1、点M对应着唯一确定的有序实数组,、分别是P、Q、R在、轴上的坐标2、有序实数组,对应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系
4、中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标。4.3.2空间两点间的距离公式1、空间中任意一点到点之间的距离公式同步检测第四章 圆与方程 一、选择题,1若圆C的圆心坐标为(2,3),且圆C经过点M(57),则圆C的半径为( )AB5C25D2过点A(1,1),B(1,1)且圆心在直线xy20上的圆的方程是( )A(x3)2(y1)24B(x3)2(y1)24C(x1)2(y1)24D(x1)2(y1)243以点(3,4)为圆心,且与x轴相切的圆的方程是( )A(x3)2(y4)216 B(x3)2(y4)216 C(x3)2(y4)29 D(x3)2(y4)219 4若
5、直线xym0与圆x2y2m相切,则m为( )A0或2B2CD无解5圆(x1)2(y2)220在x轴上截得的弦长是( )A8B6C6D46两个圆C1:x2y22x2y20与C2:x2y24x2y10的位置关系为( )A内切B相交C外切D相离7圆x2y22x50与圆x2y22x4y40的交点为A,B,则线段AB的垂直平分线的方程是( )Axy10B2xy10 Cx2y10Dxy108圆x2y22x0和圆x2y24y0的公切线有且仅有( )A4条B3条C2条D1条9在空间直角坐标系中,已知点M(a,b,c),有下列叙述:点M关于x轴对称点的坐标是M1(a,b,c);点M关于yoz平面对称的点的坐标是
6、M2(a,b,c);点M关于y轴对称的点的坐标是M3(a,b,c);点M关于原点对称的点的坐标是M4(a,b,c)其中正确的叙述的个数是( )A3B2C1D010空间直角坐标系中,点A(3,4,0)与点B(2,1,6)的距离是( )A2B2C9D二、填空题11圆x2y22x2y10上的动点Q到直线3x4y80距离的最小值为 12圆心在直线yx上且与x轴相切于点(1,0)的圆的方程为 13以点C(2,3)为圆心且与y轴相切的圆的方程是 14两圆x2y21和(x4)2(ya)225相切,试确定常数a的值 15圆心为C(3,5),并且与直线x7y20相切的圆的方程为 16设圆x2y24x50的弦AB
7、的中点为P(3,1),则直线AB的方程是 三、解答题17求圆心在原点,且圆周被直线3x4y150分成12两部分的圆的方程18求过原点,在x轴,y轴上截距分别为a,b的圆的方程(ab0)19求经过A(4,2),B(1,3)两点,且在两坐标轴上的四个截距之和是2的圆的方程20求经过点(8,3),并且和直线x6与x10都相切的圆的方程第四章 圆与方程 参考答案一、选择题1B圆心C与点M的距离即为圆的半径,52C解析一:由圆心在直线xy20上可以得到A,C满足条件,再把A点坐标(1,1)代入圆方程A不满足条件选C解析二:设圆心C的坐标为(a,b),半径为r,因为圆心C在直线xy20上,b2a由|CA|
8、CB|,得(a1)2(b1)2(a1)2(b1)2,解得a1,b1因此所求圆的方程为(x1)2(y1)243B解析:与x轴相切,r4又圆心(3,4),圆方程为(x3)2(y4)2164B解析:xym0与x2y2m相切,(0,0)到直线距离等于,m25A解析:令y0,(x1)216 x14,x15,x23弦长|5(3)|86B解析:由两个圆的方程C1:(x1)2(y1)24,C2:(x2)2(y1)24可求得圆心距d(0,4),r1r22,且r 1r 2dr 1r2故两圆相交,选B7A解析:对已知圆的方程x2y22x50,x2y22x4y40,经配方,得(x1)2y26,(x1)2(y2)29圆
9、心分别为 C1(1,0),C2(1,2)直线C1C2的方程为xy108C解析:将两圆方程分别配方得(x1)2y21和x2(y2)24,两圆圆心分别为O1(1,0),O2(0,2),r11,r22,|O1O2|,又1r2r1r1r23,故两圆相交,所以有两条公切线,应选C9C解:错,对选C10D解析:利用空间两点间的距离公式二、填空题112解析:圆心到直线的距离d3,动点Q到直线距离的最小值为dr31212(x1)2(y1)21解析:画图后可以看出,圆心在(1,1),半径为 1故所求圆的方程为:(x1)2(y1)2113(x2)2(y3)24解析:因为圆心为(2,3),且圆与y轴相切,所以圆的半
10、径为2故所求圆的方程为(x2)2(y3)24140或2解析:当两圆相外切时,由|O1O2|r1r2知6,即a2 当两圆相内切时,由|O1O2|r1r2(r1r2)知4,即a0a的值为0或215(x3)2(y5)232解析:圆的半径即为圆心到直线x7y20的距离;16xy40解析:圆x2y24x50的圆心为C(2,0),P(3,1)为弦AB的中点,所以直线AB与直线CP垂直,即kABkCP1,解得kAB1,又直线AB过P(3,1),则所求直线方程为xy40三、解答题17x2y236解析:设直线与圆交于A,B两点,则AOB120,设所求圆方程为:x2y2r2,则圆心到直线距离为,所以r6,所求圆方
11、程为x2y236(第17题)18x2y2axby0解析:圆过原点,设圆方程为x2y2DxEy0圆过(a,0)和(0,b),a2Da0,b2bE0又a0,b0,Da,Eb故所求圆方程为x2y2axby019x2y22x120解析:设所求圆的方程为x2y2DxEyF0A,B两点在圆上,代入方程整理得:D3EF10 4D2EF20 设纵截距为b1,b2,横截距为a1,a2在圆的方程中,令x0得y2EyF0,b1b2E;令y0得x2DxF0,a1a2D由已知有DE2联立方程组得D2,E0,F12故所求圆的方程为x2y22x12020解:设所求圆的方程为(xa)2(yb)2r2根据题意:r2,圆心的横坐标a628,所以圆的方程可化为:(x8)2(yb)24又因为圆过(8,3)点,所以(88)2(3b)24,解得b5或b1,所求圆的方程为(x8)2(y5)24或(x8)2(y1)24-