2022年高中数学吧必修第四章知识点总结 .pdf

上传人:Q****o 文档编号:28036826 上传时间:2022-07-26 格式:PDF 页数:8 大小:166.73KB
返回 下载 相关 举报
2022年高中数学吧必修第四章知识点总结 .pdf_第1页
第1页 / 共8页
2022年高中数学吧必修第四章知识点总结 .pdf_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2022年高中数学吧必修第四章知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学吧必修第四章知识点总结 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高中数学吧必修第四章知识点总结4.1.1 圆的标准方程1、圆的标准方程:222()()xaybr圆心为 A(a,b),半径为 r 的圆的方程2、点00(,)M xy与圆222()()xaybr的关系的判断方法:(1)2200()()xayb2r,点在圆外(2)2200()()xayb=2r,点在圆上(3)2200()()xayb2r,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022FEyDxyx2、圆的一般方程的特点:(1) x2 和 y2 的系数相同,不等于0没有 xy 这样的二次项 (2) 圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了(3) 、

2、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系设直线l:0cbyax, 圆C:022FEyDxyx, 圆的半径为r, 圆心)2,2(ED到直线的距离为d,则判别直线与圆的位置关系的依据有以下几点:(1)当rd时,直线l与圆C相离;(2)当rd时,直线l与圆C相切;(3)当rd时,直线l与圆C相交;4.2.2 圆与圆的位置关系两圆的位置关系设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点:(1)当21rrl时,圆1C与圆2C相离;(2)当2

3、1rrl时,圆1C与圆2C外切;(3)当|21rr21rrl时,圆1C与圆2C相交;(4)当|21rrl时,圆1C与圆2C内切; (5)当|21rrl时,圆1C与圆2C内含;4.2.3 直线与圆的方程的应用名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 8 页 - - - - - - - - - 1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代

4、数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论4.3.1 空间直角坐标系1、点 M 对应着唯一确定的有序实数组),(zyx,x、y、z分别是 P、Q、R 在x、y、z轴上的坐标2、有序实数组),(zyx,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),(zyx来表示,该数组叫做点M 在此空间直角坐标系中的坐标, 记 M),(zyx,x叫做点 M 的横坐标,y叫做点 M 的纵坐标,z叫做点 M 的竖坐标。4.3.2 空间两点间的距离公式1、空间中任意一点),(1111zyxP到点),(2222zyxP之间的距离公式22122122

5、121)()()(zzyyxxPP同步检测第四章圆与方程一、选择题 ,1若圆 C 的圆心坐标为 (2,3) ,且圆 C 经过点 M( 57) ,则圆 C 的半径为 () A5B5 C25 D102过点 A(1,1) ,B( 1,1) 且圆心在直线xy20 上的圆的方程是() A(x3)2(y1)24 B(x3)2( y1)24 C( x1)2( y1)24 D( x1)2( y1)24 3以点 ( 3,4) 为圆心,且与x 轴相切的圆的方程是() OyxMMRPQOyzxMP1P2NM1N2N1M2H名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - -

6、- - - - - 名师精心整理 - - - - - - - 第 2 页,共 8 页 - - - - - - - - - A(x3)2(y4)216 B(x3)2( y4)216 C( x3)2( y4)29 D( x3)2( y4)219 4若直线xym0 与圆 x2y2m 相切,则 m 为() A0 或 2 B2 C2D无解5圆 (x1)2( y2)220 在 x 轴上截得的弦长是() A8 B6 C62D436 两个圆 C1: x2y22x2y20 与 C2: x2y24x2y10的位置关系为() A内切B相交C外切D相离7圆 x2y22x50 与圆 x2y22x4y40 的交点为A,B

7、,则线段 AB 的垂直平分线的方程是() Axy10 B2xy10 Cx2y10 Dxy10 8圆 x2y22x0 和圆 x2y24y0 的公切线有且仅有() A4 条B3 条C2 条D1 条9在空间直角坐标系中,已知点M( a,b,c) ,有下列叙述:点 M 关于 x 轴对称点的坐标是M1(a, b,c);点 M 关于 yoz 平面对称的点的坐标是M2(a,b, c) ;点 M 关于 y 轴对称的点的坐标是M3(a, b,c) ;点 M 关于原点对称的点的坐标是M4( a,b, c) 其中正确的叙述的个数是()A3 B2 C1 D0 10空间直角坐标系中,点A( 3,4,0) 与点 B(2,

8、 1,6) 的距离是 () A243B221C9 D86二、填空题11 圆 x2y22x2y10 上的动点 Q 到直线 3x4y80 距离的最小值为12圆心在直线yx 上且与 x 轴相切于点 (1,0) 的圆的方程为13以点 C( 2,3) 为圆心且与y 轴相切的圆的方程是14两圆 x2y21 和(x4)2( ya)225 相切,试确定常数a 的值15圆心为 C( 3,5) ,并且与直线x7y20 相切的圆的方程为名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 8 页 -

9、 - - - - - - - - 16 设圆 x2y24x50 的弦 AB 的中点为 P( 3, 1) , 则直线 AB的方程是三、解答题17求圆心在原点,且圆周被直线3x4y150 分成 12 两部分的圆的方程18求过原点,在x 轴, y 轴上截距分别为a,b 的圆的方程 (ab0) 19求经过A( 4,2) ,B( 1,3) 两点,且在两坐标轴上的四个截距之和是2 的圆的方程名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 8 页 - - - - - - - - - 2

10、0求经过点 (8,3) ,并且和直线x6 与 x10 都相切的圆的方程第四章圆与方程参考答案一、选择题1B 圆心 C 与点 M 的距离即为圆的半径,227352)()(52C 解析一:由圆心在直线xy20 上可以得到A,C 满足条件,再把A 点坐标(1, 1) 代入圆方程 A 不满足条件选 C解析二:设圆心C 的坐标为 ( a,b) ,半径为 r,因为圆心C 在直线 xy20 上, b2a由 | CA| | CB| ,得 (a1)2(b1)2(a1)2(b1)2,解得 a1,b1因此所求圆的方程为( x1)2(y1)24名师资料总结 - - -精品资料欢迎下载 - - - - - - - -

11、- - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 8 页 - - - - - - - - - 3B 解析:与x 轴相切, r4又圆心 ( 3,4),圆方程为 ( x3)2( y4)2164B 解析: xym0 与 x2y2m 相切,(0,0) 到直线距离等于m 2mm ,m25A 解析:令 y0,(x1)216 x1 4,x15,x2 3弦长 | 5(3)| 86B 解析:由两个圆的方程C1:(x1)2(y1)24,C2:( x2)2( y1)24 可求得圆心距 d13 ( 0,4) ,r1r22,且 r 1r 2dr 1r2故两圆相交,选B7A

12、 解析:对已知圆的方程x2y22x50,x2y22x4y40,经配方,得(x 1)2y26,( x1)2(y2)29圆心分别为C1(1,0) ,C2( 1,2) 直线 C1C2的方程为 xy108C 解析:将两圆方程分别配方得( x1)2y21 和 x2( y2)24, 两圆圆心分别为O1( 1,0) , O2(0, 2) ,r11,r22,| O1O2| 22215 ,又 1r2r15 r1r23,故两圆相交,所以有两条公切线,应选C9C 解:错,对选C名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - -

13、- - - - 第 6 页,共 8 页 - - - - - - - - - 10D 解析:利用空间两点间的距离公式二、填空题112解析:圆心到直线的距离d58433,动点 Q 到直线距离的最小值为dr31212(x1)2(y1)21解析:画图后可以看出,圆心在(1,1) ,半径为1故所求圆的方程为:( x1)2(y1)2113(x2)2(y3)24解析:因为圆心为( 2,3) ,且圆与 y 轴相切,所以圆的半径为2故所求圆的方程为(x 2)2( y3)24140 或 25 解析:当两圆相外切时,由| O1O2| r1r2知224a6,即 a 25 当两圆相内切时,由| O1O2| r1r2(r

14、1r2) 知224a4,即 a0a 的值为 0 或 25 15(x3)2(y5)232解析:圆的半径即为圆心到直线x7y20的距离;16xy40解析:圆 x2y24x50 的圆心为 C( 2,0) ,P( 3,1) 为弦 AB 的中点,所以直线AB与直线 CP 垂直,即 kABkCP 1,解得 kAB 1,又直线 AB 过 P( 3,1) ,则所求直线方程为 xy40三、解答题17x2y236解析:设直线与圆交于A,B 两点,则 AOB120 ,设所求圆方程为:x2y2r2,则圆心到直线距离为5152r,所以 r6,所求圆方程为x2y2364OxyABr52- 2-4- 5第 17 题名师资料

15、总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 8 页 - - - - - - - - - (第 17 题)18x2y2axby0解析:圆过原点,设圆方程为x2y2DxEy0圆过 ( a,0) 和(0,b) ,a2Da0,b2bE0又 a 0,b0,D a,E b故所求圆方程为x2y2axby019x2y22x120解析:设所求圆的方程为x2y2DxEyF0A, B 两点在圆上,代入方程整理得:D3EF10 4D2EF 20 设纵截距为b1,b2,横截距为a1,a2在圆的方程中,

16、令x0 得 y2EyF0,b1b2E;令 y0 得 x2DxF0, a1a2 D由已知有 DE2联立方程组得D 2,E0,F 12故所求圆的方程为x2y22x12020解:设所求圆的方程为( xa)2(yb)2r2根据题意: r26102,圆心的横坐标a628,所以圆的方程可化为:( x8)2( yb)24又因为圆过 ( 8,3) 点,所以 ( 88)2( 3b)24,解得 b5 或 b1,所求圆的方程为(x8)2(y5)24 或( x8)2( y1)24名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 8 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁