《能被11整除的数的特征.doc》由会员分享,可在线阅读,更多相关《能被11整除的数的特征.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date能被11整除的数的特征能被11整除的数的特征能被11整除的数的特征能被11整除的数的特征 把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除. 例如:判断491678能不能被11整除. 奇位数字的和9+6+8=23 偶位数位的和4+1+7=12 23-12=11 因此,49
2、1678能被11整除. 这种方法叫奇偶位差法. 除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除. 又如:判断583能不能被11整除. 用583减去11的50倍(583-1150=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性: 1是任何整数的约数,即对于任何整数a,总有1|a. 0是任何非零整数的倍数,a0,a为整数,则a|0. (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。 (3)若一个整数的数字和能被3整除,则这个
3、整数能被3整除。 (4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。 (5)若一个整数的末位是0或5,则这个数能被5整除。 (6)若一个整数能被2和3整除,则这个数能被6整除。 (7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述截尾、倍大、相减、验差的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13327,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:61392595 , 595249,所以6139是7的倍数,余类推。 (8)若一个整数的未
4、尾三位数能被8整除,则这个数能被8整除。 (9)若一个整数的数字和能被9整除,则这个整数能被9整除。 (10)若一个整数的末位是0,则这个数能被10整除。 (11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的割尾法处理!过程唯一不同的是:倍数不是2而是1! (12)若一个整数能被3和4整除,则这个数能被12整除。 (13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述截尾、倍大、相加、验差的过程,直到能清楚判断为止。 (
5、14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述截尾、倍大、相减、验差的过程,直到能清楚判断为止。 (15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述截尾、倍大、相加、验差的过程,直到能清楚判断为止。 (16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。 (17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。 (18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。-