《能被11整除的数的特征(共4页).doc》由会员分享,可在线阅读,更多相关《能被11整除的数的特征(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上能被11整除的数的特征能被11整除的数的特征 把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除. 例如:判断能不能被11整除. 奇位数字的和9+6+8=23 偶位数位的和4+1+7=12 23-12=11 因此,能被11整除. 这种方法叫奇偶位差法. 除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除. 又如:判断583能不能被11整除. 用583减去1
2、1的50倍(583-1150=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性: 1是任何整数的约数,即对于任何整数a,总有1|a. 0是任何非零整数的倍数,a0,a为整数,则a|0. (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。 (3)若一个整数的数字和能被3整除,则这个整数能被3整除。 (4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。 (5)若一个整数的末位是0或5,则这个数能被5整除。 (6)若一个整数能被2和3整除,则这个数能被6整除。 (7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数
3、,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述截尾、倍大、相减、验差的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13327,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:61392595 , 595249,所以6139是7的倍数,余类推。 (8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。 (9)若一个整数的数字和能被9整除,则这个整数能被9整除。 (10)若一个整数的末位是0,则这个数能被10整除。 (11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查
4、7的割尾法处理!过程唯一不同的是:倍数不是2而是1! (12)若一个整数能被3和4整除,则这个数能被12整除。 (13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述截尾、倍大、相加、验差的过程,直到能清楚判断为止。 (14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述截尾、倍大、相减、验差的过程,直到能清楚判断为止。 (15)若一个整数的个位数字截去,再从余下的数中,加上个位数
5、的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述截尾、倍大、相加、验差的过程,直到能清楚判断为止。 (16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。 (17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。 (18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(ab)也能被c整除。性质2:几个数相乘,如果其中有一个因数能被
6、某一个数整除,那么它们的积也能被这个数整除。能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数,个位上为0或5的数都能被5整除,那么这个数能被5整除能被6整除的数,各数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述截
7、尾、倍大、相减、验差的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13327,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:61392595 , 595249,所以6139是7的倍数,余类推。能被8整除的数,一个整数的末3位若能被8整除,则该数一定能被8整除。能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。 11的倍数检验法也可
8、用上述检查7的割尾法处理!过程唯一不同的是:倍数不是2而是1!能被12整除的数,若一个整数能被3和4整除,则这个数能被12整除能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述截尾、倍大、相加、验差的过程,直到能清楚判断为止。能被17整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述截尾、倍大、相减、验差的过程,直到能清楚判断为止。另一种方法:若一个整数的末三位
9、与3倍的前面的隔出数的差能被17整除,则这个数能被17整除能被19整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述截尾、倍大、相加、验差的过程,直到能清楚判断为止。另一种方法:若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除能被23整除的数,若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除能被25整除的数,十位和个位所组成的两位数能被25整除。能被125整除的数,百位、十位和个位所组成的三位数能被125整除。专心-专注-专业