《汽轮机本体培训教材.doc》由会员分享,可在线阅读,更多相关《汽轮机本体培训教材.doc(78页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、汽轮机本体培训教材3.1 汽缸汽缸是汽轮机的静止部分,它的作用是将蒸汽与大气隔绝,形成蒸汽完成能量转换的封闭空间。此外,它还要支撑汽轮机的其他静止部件,如:隔板、隔板套、喷嘴汽室等。按蒸汽在汽轮机内流动的特点,汽缸的高中压部分承受蒸汽的内压力,低压部分有一部分缸体承受外部的大气压,由于汽缸的重量大,结构复杂,在运行过程中,由于蒸汽的温度和比容变化较大,汽缸各部分承受的应力沿汽缸的分布有较大的差别,因此,汽缸在设计和制造过程中,仍需考虑较多的问题,其中主要有:汽缸及其结合面的严密性,汽轮机启动过程中的汽缸热膨胀、热变形和热应力以及汽缸的刚度、强度和蒸汽流动特性等。为了便于加工、装配和检修,汽缸一
2、般做成水平中分形式,其主要特点是:通常把汽缸分为上下两个部分,转子从其径向中心穿过,为了使汽缸承受较大的蒸汽压力而不泄漏,汽缸上下两个部分用紧固件连接,最常用的是用螺栓、螺帽,它们沿上下缸中分面外径的法兰将上下缸紧密联在一起。为了保证法兰结合面的严密性,汽缸中分面在制造过程中必须光洁、平整。法兰螺栓的连接一般采用热紧方式,也就是在安装螺栓时给螺栓一定的预紧力,在经过一段时间的应力松施后仍能保证法兰的严密性。另外,汽缸的进汽部分尽可能分散布置,以免造成局部热应力过大,引起汽缸变形。随着机组容量的增大,蒸汽参数的提高,设计密封性能好而且可靠的法兰非常困难,为了解决这个问题,大型的汽轮机往往做成双层
3、缸体结构,内外缸之间充满着一定压力和温度的蒸汽,从而使内外缸承受的压差和温差较小,另外,双层缸结构缸体和法兰都可以做的较薄,减小热应力,有利于改善机组的启动和负荷适应能力。一般情况下,双层缸的定位方法为:外缸用猫爪支撑在轴承座上,内缸与外缸采用定位销和导向销进行定位和导向。汽缸在运行中要承受内压力和内外壁温差引起的热应力,为了保证动静部分在正常运行时的正确位置,缸体材料必须具有足够的强度性能、良好的组织稳定性和抗疲劳性,并具有一定的抗氧化能力。对于汽缸的中分面法兰紧固件,因为其在应力松施的条件下工作且承受拉伸应力,因而这些部件材料要具有较高的抗松施性能、足够的强度、较低的缺口敏感性、以及较小的
4、蠕变脆化倾向和抗氧化性。通常螺母的强度比螺栓低一级,这样两者硬度不同减小螺栓的磨损,并能防止长期工作后不咬死。为了保证汽缸受热时自由膨胀又不影响机组中心线的一致,在汽缸和机座之间设置了一系列的导向滑键,这些滑键构成了汽轮机的滑销系统,对汽缸进行支撑、导向和定位,保证汽轮机良好对中,各汽缸、转子、轴承的膨胀不受阻碍。高中压缸一般都采用支撑面和中分面重叠的上猫爪支撑结构。汽缸本身的热膨胀和转子的热膨胀也是汽轮机设计过程中要考虑的问题,要合理的选定汽缸的死点、转子与汽缸相对死点的位置,留有足够的相对膨胀间隙,保证动静部分的间隙在合理的范围内,提高汽轮机的整体工作效率。汽轮机在运行中,在汽缸内不允许有
5、任何积水,因此,汽缸在设计时有足够的去湿装置,疏水留有足够的通流面积,尽可能的避免无法疏水的洼窝结构。1、轴振监测仪 2、汽轮机机架 3、1号支撑轴承 4、挡油环 5、轴封 6、喷嘴隔板7、高压内缸 8、叶片 9、高压外缸 10、第一级喷嘴汽室 11、轴封 12、中压内缸13、联通管 14、轴封 15、挡油环 16、支撑轴承 17、轴承测振仪 18、推力轴承19、推力轴承磨损监测器 20、转子 21、轴向位移监测仪3.2 高中压缸高中压缸采用单流程、双层缸、水平中分结构,外缸为上猫爪支撑形式,上下缸之间采用螺栓连接。在高压缸第6级后、高压缸排汽、中压缸第11级后和中压缸排汽布置四级抽汽口,分别
6、供1号、2号、3号高加及除氧器、小机用汽。高中压内缸之间设置有分缸隔板,在高中压外缸两端及高中压内缸之间设置有轴端密封装置,在高中压外缸和轴承座之间设置有挡油环。汽轮机高中压缸的主要特点A、采用高中压合缸技术:这种布置方法是将高压内缸和中压内缸布置在同一个外缸之内,减少了轴承和轴封数量,缩短汽轮机的跨度,而且蒸汽流向相反,可以更好的平衡轴向推力。高温部分集中在汽缸的中段,轴承和调节部套受高温影响较小,两端外轴封漏汽较少。高中压合缸结构的汽轮机主要缺点是:高中压分缸隔板承受较大的压差,在汽轮机变工况时产生较大热应力,机组的动静部分胀差不容易控制,由于高中压进汽管道集中布置在中部,显的拥挤,给检修
7、带来诸多不便。另外为了防止汽轮机在甩负荷时,中间汽封室积压串汽,引起汽轮机超速,汽轮机在中间汽封室设置事故排放阀(BDV阀),在甩负荷时,将中间汽封室的存汽引至凝汽器。B、高中压缸为双层缸结构:双层缸结构可以使热应力分散于两缸,内缸的温度梯度和压力梯度变小,在承受相同的热应力的情况下,缸体壁厚可以减薄,有利于变工况运行。双层缸结构的汽轮机汽缸法兰薄,在变工况情况下,这些部件的温度变化较快,没必要设置专门的法兰螺栓加热装置。C、汽缸缸体采用抗高温材料:由于高压及中压部分进汽压力、温度的升高,必须在材料、结构及冷却上采取相应措施。汽轮机汽缸高压部分采用具有优良的高温性能CrMoV钢;在结构上保证内
8、缸的最大工作压力为喷嘴后的压力与高排压力差,外缸最大工作压力为高排压力与大气压之差,有效的降低了汽缸的工作压力,同时进汽口及遮热环的布置使得汽缸有一个合理的温度梯度,便于控制汽缸热应力,保证汽缸的寿命损耗在要求的范围内。中压部分除中间汽封漏汽冷却高中压转子中间汽封段以外,还从高压第5级隔板前经气动调阀引蒸汽冷却中压第级叶轮轮面及轮缘,大大提高了中压缸第级的可靠性。D、高压缸的第一级喷嘴为单独的喷嘴室:高压内缸喷嘴室由四组喷嘴组成,沿圆周方向布置,四根高压进汽导管为上下垂直布置,进汽管直接插入高压内缸的喷嘴室。锅炉主蒸汽经汽轮机主汽阀后分为四路分别进入到四个高压调节阀,经过导管进入汽轮机膨胀做功
9、。机组启动、加负荷情况下,为全周进汽,正常在喷嘴调节方式下运行时为部分进汽。在部分进汽的情况下,第一级动叶受到很大的作用力,而且是局部的,最危险的截面往往发生在该级,由于高中压缸第一级喷嘴组承受比较大的焓降,承受较大的压差,因而其叶轮厚度比其它压力级要大的多。E、中压缸喷嘴室:锅炉再热蒸汽经汽轮机中压联合汽阀进入汽轮机中压内缸,经过四根导管进入汽轮机喷嘴膨胀做功。F、高中压缸的支撑:采用双层缸结构的汽轮机由于内外缸的膨胀量不同,为保证在受热膨胀过程中转子和汽缸的对中,使得汽缸的支撑变得十分复杂,一般情况下,汽缸的支撑方式有两种:一是猫爪轴承座支撑方式,二是汽缸通过外伸撑脚直接安放在基础台板上。
10、大功率汽轮机毫无例外的采用猫爪轴承座支撑方式。汽轮机的支撑方式为:高压外上缸通过猫爪支撑在1号轴承座和2号轴承座运行垫片上,外下缸通过汽缸法兰螺栓吊在高压外上缸。外下缸上设有安装猫爪,安装猫爪通过横销连接在轴承座上,下缸通过间隙调整螺栓紧固在轴承座上。上内缸通过汽缸螺栓紧固在高压下内缸上,高压下内缸通过猫爪支承在高中外下缸上,高压上进汽管通过4只螺栓紧固在高压下进汽室上,高压下进汽室通过支承脚支承在高压内下缸上,中压内上缸通过汽缸法兰螺栓紧固在中压内下缸上,中压内下缸通过猫爪支承在高中压外缸上。这种面支撑方式,可以减轻接触面的摩擦,受热膨胀和冷却时,可以自由移动。1) 高中压缸的通流部分:汽轮
11、机的通流部分主要是由各个级的通流部件和进、排汽部分组成,它包括调节阀、喷嘴汽室的喷嘴、隔板静叶及动叶栅等部件组成,是汽轮机完成能量转换的核心部件。在进行汽轮机通流部分设计时,主要考虑问题有:最有利的循环参数、合理的配汽机构、力求各缸乃至整机的效率最高,满足强度和刚度的要求,结构合理、安全可靠。另外,随着机组容量的增大,蒸汽初参数的提高,汽轮机通流部分固体颗粒侵蚀(SPE)已成为不容忽视的问题,各个制造商在进行通流部分设计时都力求使SPE降到最低的程度。二期汽轮机的高压部分共有8级(一期为9级),中压缸有6级(一期为5级),高压缸第6级后抽出蒸汽作为1号高加的加热汽源,从高压缸排汽抽出一部分蒸汽
12、作为2号高加的汽源。中压缸共有两级抽汽,分别供3号高加和除氧器、小机。为了减小汽轮机的漏汽损失,在高中压缸通流部分内外缸的端部、转子和隔板、叶片护环和内缸之间,都设置了汽封装置。A、高中压缸的隔板汽轮机的级是由喷嘴静叶和与之相配合的动叶组成,是汽轮机作功的基本单元,当具有一定温度和压力的蒸汽通过汽轮机的级时,首先将通过喷嘴静叶的蒸汽的热能转换为动能,然后,在动叶中将动能转换成机械能,从而完成汽轮机作功的任务。隔板是将汽轮机的通流部分分割成若干级,用以固定汽缸内各级静叶片和阻止级间的漏气。蒸汽在级内进行能量转换时压力逐渐降低,若仅隔板两侧存在压力差,而动叶前后的蒸汽压力相等,这种级叫纯冲动级,若
13、蒸汽内的压降主要集中在隔板的静叶内,在动叶内只有较小的压降则这种级叫冲动级,若蒸汽在在动叶栅和静叶栅内的压降近似相等,则叫反动级。二期汽轮机是纯冲动式汽轮机,在隔板中承受较大焓降,转子对轴承产生较小的轴向推力,提高了机组整体的安全性。隔板的主要部件由外环、外围带、静叶栅、内围带、隔板体等部件组成,隔板体和静叶栅外围带采用焊接结构。隔板一般做成沿水平中分的两块,便于安装拆卸,为了使隔板工作时具有良好的经济性和可靠性,隔板的结构应能满足以下要求:足够的强度和刚度,良好的汽密性,合理的支撑和定位与转子同心,隔板上的喷嘴具有良好的空气动力性能、足够的表面光洁度和正确的出汽角。隔板按其结构一般可分为装配
14、型和焊接型两种,由于纯装配型结构的隔板金属消耗量大,成本较高,静叶顶部和根部有贴合间隙会产生蒸汽泄漏,现在用的越来越少了。焊接隔板是将铣制好的静叶焊接在冲好型空的内外围带之间,构成喷嘴弧段,然后再与弧形外缘和隔板体相互焊接而成,这种隔板有较好的强度和刚度,减少了金属耗量,具有良好的汽密性。汽轮机隔板采用焊接隔板,隔板内外围带在数控机床上精加工,保证静叶片在隔板中的准确定位,隔板中分面采用径向折线式结构或凹凸镶嵌式结构,在数控镗铣床进行精加工,保证隔板中分面的静叶片是完整的。喷嘴组静叶片广泛采用扭曲叶片,出汽边厚度严格控制,有效地减少了尾迹损失。隔板在汽缸或隔板套的固定必须满足隔板受热时的自由膨
15、胀和对中的要求,隔板与隔板槽之间留有一定的间隙,大型机组的隔板安装一般采用中分面支撑方式,这种支撑方式是借助于Z型悬吊销,将隔板支撑在汽缸下部中分面上。隔板与汽缸的对中依靠悬吊销支持面下面的调整垫块和定位销进行调整。隔板上半块采用依托方式由下半块支撑。在结合面处设置平键,用沉头螺钉固定在隔板上,装配时与下隔板相应的凹槽相配合,实现隔板上下部分的对中。为了便于检修和拆装,上隔板一般采用止动压板固定在上汽缸上,压板用沉头螺钉固定在上汽缸上,这样在拆装隔板时,隔板能够和缸体一起起吊。这种连接方式能很好的解决水平结合面的漏汽问题,增强上下隔板的结合刚度。汽轮机采用了径向同心刚性隔板,中分面支撑方式,当
16、温度升高时,从转子中心向外膨胀,保持相对较小的径向间隙,具有较高的经济性。B、高中压缸静叶片汽轮机的静叶片是做功的主要部件,为保证叶片有较高的效率,一般情况下,高中压缸静叶片都是叶根和围带由型钢整体加工而成,汽轮机高中压静叶片的型线采用高效的厚加载层流叶型(AVN),这种扭曲变截面静叶片的毛坯一般采用环形锻件或精铸件,铸件成形后,其型面在数控铣床铣制而成,具有较好的空气动力特性,较高的效率。汽轮机高压缸一般设立单独的喷嘴汽室,采用这样的结构主要考虑的因素是:将汽缸与最高参数的蒸汽相接触的部分限制在最小的范围内,可以使汽轮机转子以及除进汽室第一级喷组以外的缸体等静止件仅与作功后的蒸汽相接触,降低
17、汽缸的整体机械应力,有利于汽轮机的安全,使得汽缸结构简单,缸体较薄,提高机组的适应性。另外由于整体喷嘴汽室的结构降低了轴端漏汽,可以简化轴端汽封的结构,提高了机组的整体效率。汽轮机采用多个调节阀控制汽轮机的进汽,与之相应的第一级喷嘴也分成若干个喷嘴组,每组喷嘴占据第一级进汽圆周的一个弧段。汽轮机喷嘴汽室的喷嘴共分四个弧段,由四个调节阀控制,第一、三喷组弧段共有46个喷嘴,第二喷嘴组共有36喷嘴,第四喷嘴组共有56喷嘴。2)汽轮机通流部件的固体颗粒侵蚀(SPE)通流部件,主要是调节级和中压缸第一级的固体颗粒侵蚀是亚临界和超临界机组普遍存在的问题。固体颗粒主要是由于锅炉、主蒸汽管道和再热蒸汽管道中
18、内表面的氧化铁剥离层,剥离层脱落形成的固粒主要对调节级、再热第一级静动叶产生严重冲蚀。机组蒸汽初参数越高,其携带固体颗粒的能力越大,对汽轮机的通流部分的损伤越大。通流部分的固体颗粒侵蚀不仅使机组的经济性恶化,同时,由于调节级承担的焓降较大并工作在高温高压的蒸汽区,因而造成调节级的强度大大降低,危及机组的安全运行。解决SPE的方法大致有优化通流部分的结构设计,机组配置合理的旁路、在容易发生SPE的部位涂层等。调节级的SPE主要产生在喷嘴出汽边内弧上,这主要是来自进汽管的粒子被汽流加速后以小角度冲击在压力面出汽边上,加上喷嘴的转折角较大,出汽边内弧正好处于冲击射线上,因而在该部位容易产生严重冲蚀。
19、中压缸第一级固粒冲蚀主要表现在导叶出口背弧上,其SPE机理是静动叶片间粒子复杂的多重反射冲击,来自静叶出口的粒子首先打在动叶进汽边背弧上,粒子在动叶上获得巨大切向速度,并以小角度冲击导叶出口背弧表面,对静叶形成严重的冲击腐蚀。二期汽轮机在防止固体颗粒侵蚀方面,针对不同的通流部分采取了不同的防止方法:调节级采用新的斜面喷嘴型线技术和保护涂层技术,改变固粒的冲击角度,使出汽边内弧偏离冲击射线,可有效减小调节级的SPE。 普通型 调节级防止固体颗粒侵蚀示意图 改进型中压缸第一级主要是合理加大动静叶轴向间隙,使从动叶反射的粒子被主流吹回动叶流道而不能打在静叶出口背弧上,切断粒子多重反射的途径;同时对静
20、叶采用等离子淬火层保护技术,动静叶采用特殊材料设计,提高动叶的耐冲蚀性能;从而有效防止了SPE,提高持久效率。 原设计 再热第一级防止固体颗粒侵蚀示意图 改进设计3.3 低压缸低压缸对空冷机组来讲,低压模块的设计是重点,空冷机组与湿冷机组相比,低压模块承受更为恶劣的工作条件:a.设计背压高,背压变化范围大,背压变化频繁;b.对于直接空冷机组,低压外缸的受力比湿冷机组要复杂得多;c.低压末级叶片在最恶劣的小容积流量下的鼓风会产生大量的热量,必须有可靠的喷水系统以降低低压缸的温度;d.由于中低压缸设计分缸参数考虑,低压进汽参数较高,低压内缸、转子进汽区域将承受比较高的温度;考虑空冷机组工作特点,在
21、低压模块主要有以下特点:1.采用专用空冷叶片:使用优良的静、动叶型线,采用较高的根部反动度,选择合理的叶高,保证机组效率及出力。2.低压轴承落地:采用落地支持轴承可以消除由于背压的变化引起排汽温度变化对轴承标高影响。二期支持轴承装在基础上(一期低压缸支持轴承布置在低压排汽汽缸上)。3.低压三层缸结构:由于低压缸进汽温度较高,低压内缸进汽区域承受非常大的温度应力,内缸产生产生较大的变形。为了防止此现象的发生,内缸采用全焊接双层结构,内缸外侧采用遮热罩覆盖,以降低压内缸的内外温差。采用新技术对低压缸总体结构及排汽蜗壳进行进一步的优化设计。4.喷水装置设计:为了保证机组安全运行,低压缸内设置了喷水装
22、置,在排汽温度升高时将凝结水喷入低压缸排汽蜗壳,降低低压缸温度。1) 低压缸工作特性A、低压缸处于蒸汽从正压到负压的过渡工作区域,排汽压力很低,蒸汽比容增加很大,故低压缸多采用双缸反向对称布置的双分流结构,采用这种结构的主要优点是能很好的平衡轴向推力。另外由于蒸汽比容变化较大,为避免叶片过长,低压缸多分成多个独立的缸体。低压缸内每一级压降不大,但其做功能力超过高中压缸的任何一个压力级。所以,低压缸的结构应能保证机组安全的前提下,多做功,低压缸排汽的压力非常低,因此低压缸的缸体特别庞大。低压缸的纵向温差变化大,是汽轮机温差变化最大的部分,为减小热应力,改善机组的膨胀条件,大机组都采用三层缸结构,
23、第一层为安装通流部分组件的内缸,大都采用部件组合结构,隔板装于隔板套上;第二层为隔热层,由于低压缸进汽部分温度较高,外部排汽温度较低,因此都采用设置隔热板的方法,使得汽缸温差分散,温度梯度更加合理;第三层为外缸,用以引导排汽和支撑内缸各组件。B、低压缸进汽管布置方式低压缸的进汽由导汽管自汽缸顶部垂直引入,穿过外缸进入内缸的环形空间,均布进入两个分流缸的通流部分做功。低压缸的排汽经排汽管进入排汽装置后经两根内径6000mm排汽管道进入空冷凝汽器,。低压缸的排汽管与排汽装置之间采用挠性膨胀节,用于补偿设备和管件的膨胀(一期低压缸的排汽管和凝汽器之间采用挠性膨胀节)。一般情况下,低压缸都设计成径向扩
24、压型排汽缸,低压缸这种设计的主要目的是:可使汽缸出口静压高于进口静压,使蒸汽的动能转化成压力能,减小末级叶片出口至冷凝器入口的压降,从而减少排汽损失,提高低压缸的效率。C、低压缸的喷水装置机组正常运行时,排汽压力、温度很低,但在汽轮机启动、空载或低负荷时,由于蒸汽通流量减小,不足以带走低压缸由于鼓风摩擦产生的热量,从而使排汽温度升高。当排汽温度过高时,会引起低压缸的变形,使汽缸与转子中心线相对位置改变,诱发机组产生振动。为防止低压缸的热变形,大型汽轮机组低压缸都设置了低压缸喷水装置。二期汽轮机设计在机组负荷30%负荷,且低压缸任意一个模拟量排汽温度测点65,则低压缸排汽减温水调阀开始开,至低压
25、缸任意模拟量排汽温度测点80时全开(一期为低压缸任意一个模拟量排汽温度测点47,则低压缸排汽减温水调阀开,至低压缸任意模拟量排汽温度测点80时全开)。低压缸喷水系统向低压缸两端喷水环的喷嘴提供凝结水,凝结水能使离开汽轮机末级叶片的蒸汽,在进入低压缸排汽室之前降低温度。通常,低压缸排汽室中的蒸汽是湿蒸汽,其温度是相应于出口压力下的饱和温度。然而,在小流量情况下,低压缸末几级长叶片做负功引起的鼓风加热,使得排汽温度迅速升高。这种不能接受的排汽温度,经常发生在低于30%负荷的小流量工况下,特别是在额定转速下的空负荷状态时。排汽温度取决于通过叶片的蒸汽流量、排汽装置真空等参数。机组出现高的排汽温度,必
26、须尽量避免,以减少动静部件之间由于热变形而产生碰擦的可能性。这种碰擦在一定转速以上会发生严重危害,并导致强迫或长期停机。甚至在盘车转速时,尽管转速已经下降,但是已经存在的热变形所造成的摩擦,使得金属脱落并削弱转动部件,如铆钉、围带等,最终将引起部件的损坏。1、低压外缸2、低压内缸3、大气泄放阀4、联通管5、喷嘴隔板6、叶片7、汽封8、挡油环 9、轴承座 10、轴振动监测仪 11、低压转子 12、高中压转子汽轮机一期低压缸的纵剖面图,二期除轴承座外基本一致厂家都限定了低压缸排汽温度的极限值,当超过此数值时,作用于汽轮机ETS系统使汽轮机跳闸(二期为121,一期为107);当低压缸排汽压力过高时,
27、为保护低压缸,在低压缸上部设置大气泄放阀(防爆膜),动作的压力略高于大气压。D、低压缸的去湿装置纯凝汽式汽轮机的低压通流部分的的末几级叶片多工作在湿蒸汽区,由于蒸汽中含有水份,对叶片的工作带来了不良的影响,主要是湿汽引起的附加能量的转换损失。使叶片工作效率降低,蒸汽中的水份对动叶片造成水蚀,使叶片的寿命降低。为了预防和减轻湿汽级叶片的水蚀危害,一般采用下列几种方法:限制末级叶片的排汽湿度,提高叶片的本身抗水蚀能力,在通流部分设计去湿装置,适当放宽动、静部分的间隙,选用适当的动叶叶型等。二期汽轮机有两个形式完全相同的低压缸,两个低压缸均为双分流对称结构,从中部进汽,在中分面上将汽缸分成上下两个部
28、分。低压缸共有12级动叶片,对称布置在低压内缸的两侧,共有3级抽汽供3个低压加热器用汽,分别从第16级、17级、18级级后抽出。在低压转子两侧分别通入轴封蒸汽供低压轴封用,共有三齿两腔室,在轴封与轴承座之间装设有挡油环。在低压外缸的顶部装设有四个大气泄放阀(即防爆膜)。在轴承座内装设有轴承振动监测装置、轴振检测装置等测量装置。2) 低压缸的支撑一般情况下,低压缸两侧的汽封和轴承都装设在外部排汽室,上半缸和下半缸在水平中分面用紧固件固定,形成一个整体。外部排汽室的支撑多采用悬吊结构,通过两侧四个支座用螺栓紧固在台板上。内上缸支撑在每一侧排汽室的导流汽室上,接触面为了减少磨损都经过淬硬处理,并允许
29、汽缸膨胀和冷却时,作轴向运动。在轴向的两侧内下缸,座落在外部排汽室的底部框架上,通过滑销的定位,允许汽缸沿横向中心向两侧自由膨胀。二期汽轮机采用落地支持轴承,装在基础上,独立于低压汽缸。(一期为两低压缸前后轴承座与下汽缸焊接为一体,每个汽缸通过汽缸座架直接支承在台板上)。这样二期汽轮机各缸之间距离明显大于一期汽轮机各缸之间距离。采用落地支持轴承可以消除由于背压的变化,引起排汽温度变化对轴承标高影响。内下缸通过汽缸猫爪支承在外下缸内调整垫片上,内下缸用间隙调整螺栓紧固在外下缸上。低压内缸支承在外缸四个垫片上,确保汽缸上下中心正确。轴向位置由低压内下缸两侧中部与外下缸的夹条键确定。水平方向位置由汽
30、缸轴向中心线上的夹条键确定正确位置,通过这种布置使内缸在各种工况下保证精确对中。蒸汽入口配有一个波纹管,此波纹管在内缸与外缸之间,它让内缸沿外缸移动,并阻止空气进入冷凝器。低压缸与排汽装置的连接采用不锈钢弹性膨胀节连接方式,排汽装置与基础采用刚性支撑,即在排汽装置中心点为低压缸的绝对死点,在排汽装置底部凝结水箱四周采用聚四氟乙烯支撑台板,使排汽装置底部凝结水箱壳体能向四周顺利膨胀。3) 低压缸通流部分汽轮机低压缸的通流部分,共有226级,两个低压缸完全相同,都是由隔板上组装静子和转子上组装动叶组成,蒸汽沿中心线方向引入,经环形进汽室,均匀进入两侧的通流部分作功。内缸组件采用分段组合结构,有利于
31、回热抽汽管道的引出。低压缸排汽湿度设计为7.3%,为了防止水蚀,在低压缸末级动叶顶部设置了去湿装置。去湿装置根据它所安装的位置分级前和动叶片前两种。它是利用水珠受离心力作用而被抛向通流部分外圆的原理工作的。一般将水滴甩进到去湿装置的槽中,然后引入排汽装置。另外还有还采用具有吸水缝的空心静叶,利用排汽装置内很低的压力,把附着在静叶表面的水滴沿静叶片上开设的吸水缝直接吸入凝汽器。在静叶片进汽部分的背弧侧和出汽部分的内弧侧设置去湿槽,利用去湿槽对水膜的破坏和吸收作用,去除静叶表面的流动水膜,减少水膜在静叶片出汽边附近由于撕裂而形成尺寸较大的水滴数目。为保证蒸汽在每一级中能自由膨胀,避免动静部分的摩擦
32、,动静部分设置了一定的间隙,为了减少漏汽,在转子围带和隔板之间,叶片围带和隔板之间均设置了汽封装置。4) 低压缸的隔板和静叶片汽轮机低压缸的隔板是沿水平中分面分成上下两个部分,有隔板体、静叶和汽封装置等组成。静叶片由合金材料加工制成并焊入隔板,低压前四级隔板为自带冠导叶,后两级为直焊式导叶片。将静叶片与隔板内环和外环焊接在一起后,再完成隔板的精加工。低压缸的内缸和隔板套一般情况下都是分段组合结构,隔板结构基本相同,由于叶片的高度不同,在其外部延伸的导流凸肩的形状有所不同,低压缸隔板是紧固在低压内缸上,随着汽缸的膨胀而保持与转子的同心,可以在三个方向上自由运动,其定位方法和高中压缸的隔板定位结构
33、相同。由于结构的不同,低压缸通流部分的动、静叶片一般都不采用同一种形式的叶片,随着蒸汽压力的降低,容积通流量变化显著,动、静叶片一般做成变截面叶片。汽轮机的低压缸静叶采用高负荷静叶型线(CUC),提高了低压缸的整体效率。5) 低压缸的大气阀大气阀(也称大气泄放阀或防爆膜)装于汽轮机低压缸两端的汽缸盖上,其用途是当低压缸的内压超过其最大设计安全压力时,自动进行危急排汽。如果排汽压力升高到超过预定值,圆板1被向外压,使铅板5在环夹外缘和阀盖内缘之间被剪断。铅板的断裂,使汽轮机后汽缸内的压力降低,蒸汽沿汽缸向上喷出。阀盖7可防止铅板、圆板和环夹飞出伤人和损坏设备。外径处的罩板引导汽流向上喷出。铅板5
34、断裂时低压缸内压为0.350.49Kgcm2(表压),亦即0.0340.48MPa(g)。3.4 汽缸运行监测汽缸在运行状态下机械状态的监视是一个十分复杂的问题,在现有的测试技术水平下,有许多问题还没有彻底解决,有许多测试手段限于条件还不能投入应用。因此汽缸的监视,在一些比较关键的项目上采用的仍是间接监测,而且一些数据、指标也都带有一定的经验性,这就更增加了汽缸运行监视的复杂性。汽缸在运行时一般监视的项目有热应力、热膨胀、热变形、汽缸温度等。1)热应力的监测汽轮机在稳定工况运行时,汽缸壁除承受内部蒸汽压力所产生的静应力外,还承受内外壁的热应力。由于在稳定工况下汽缸与法兰的温差、汽缸内外壁的温差
35、都不大,所以热应力数值也有限。但在启动、停机或负荷大幅度变化等不稳定工况下,汽缸内的蒸汽压力和温度都将剧烈地变化。压力变化范围再大,只要在设计的范围内,一般是不会引起什么不良后果的,因为汽缸壁的厚度是根据承受的最高压力来设计的。但过渡工况下温度剧烈的变化会使汽缸内外壁产生很大的温度差,由此将引起较大的热应力。当热应力和静应力的综合应力值超过金属材料的屈服极限,就会引起金属的残余变形,成为汽缸裂纹和损坏的原因,这就是提出监测汽缸热应力的原因。从热传导理论可知,对于无限大的平壁,当介质温度一定,金属壁的两个外表面的温度亦均匀,则沿平壁厚度方向温度的分布呈直线形式,而且所有各点的温度均不随时间而变化
36、,此时的传热状态称作稳定传热。汽轮机带一定负荷稳定运行即属此种情况,当启停机时,极缓慢地升降转速和增减负荷的状态,亦属此种情况。当介质温度是时间的线性函数,在一段足够长的时间后,沿平壁厚度任意一点的温度亦为时间的线性函数,且其温度梯度场稳定,此时传热状态称作准稳定传热,此时沿平壁厚度方向温度分布呈抛物线形式。汽轮机启停机时较快的升降转速和增减负荷的过程,以及此过程结束之后不长时间内的热传导皆可视作此种情况。当介质温度或介质对壁面的放热系数发生剧烈变化时,内壁温度将很快上升,此时温度梯度场也将随时间而变化,这时的传热状态称为不稳定传热,这时沿平壁厚度方向温度的分布可视为双曲线形式,汽轮机启动升速
37、时主汽门门壁、急剧加负荷和甩负荷时调速汽门门壁、调节级汽室处汽缸壁和法兰的热传导,均与此种情况相似。当平壁在完全约束状态下(指四周均有约束力限制变形,不考虑平壁热弯曲的附加应力的影响)加热时,内壁承受最大热压应力,外壁承受最大热拉应力,对于稳定传热当平壁在完全无约束状态下加热时,即考虑平壁因热弯曲产生附加应力的影响时,内壁所承受的最大热压应力值,外壁所承受的最大热拉应力值均将减小,实际上,汽轮机的汽缸、法兰均是界于完全约束与完全无约束之间的。汽缸或法兰壁面的热应力的大小,取决于传热方式和内外壁温度差。由于对确定的金属材料,导热系数为定值,而一般的变动工况(甩负荷、负荷剧增等急剧冷却和加热的工况
38、例外),传热方式均可按准稳定传热考虑,此时热应力值仅决定于内外壁温差。因此内外壁温差可用来作为监视和控制汽缸壁或法兰壁热应力的可靠依据,实际启停汽轮机时,只要监视和控制汽缸或法兰内外壁温差在规定范围内,就可保证其内壁热应力不超过允许值。目前大功率汽轮机一般都在关键部位装设汽缸和法兰内外壁温度的测点,通过监视其温差来监视汽缸的热力机械状态。根据热传导理论,在蒸汽对平壁的放热系数恒定的条件下,当达到准稳定传热状态时,内外壁的温度差亦达到最大恒定值。内外壁温差与温升速度以及壁厚的平方成正比,壁厚一定时,温升速度的大小即决定了内外壁温差的大小,进而也就决定了壁面热应力的大小。因此通过监测和控制金属温升
39、速度,也可达到监测控制金属热应力的目的。在相同的温升速度下,厚壁比薄壁的内外壁温差要大。启动时,法兰内外壁温差远大于缸壁的温差。从这里还可看出,控制热应力应以厚度较大部件法兰的内外壁温差作依据,如以汽缸壁作为检测依据,则会产生法兰内外壁温差过大、热应力超过材料许用应力的危险状态。螺栓的受热主要靠法兰传递,因此,在启动加热过程中法兰温度总是比螺栓要高一些,它们之间的温差会使螺栓承受附加的热拉应力,当螺栓承受的总拉应力超过材料屈服极限时,就有被拉断的危险。当已知螺栓材料的屈服极限和螺栓的预紧力时,就能计算出法兰、螺栓间的最大允许温差值。因此,为了控制螺栓的热应力值,就必须监测法兰与螺栓之间的温差,
40、再根据各该部件金属材料的性能,是不难得出监视它们的热应力值的控制指标的。当汽轮机启动加热时,汽缸内壁温度总是大于外壁温度,因此内壁承受热压应力而外壁承受热拉应力。反之,当汽轮机减负荷停机时,内壁温度又会低于外壁温度,因而内壁承受热拉应力而外壁承受热压应力,最大热应力总是产生在内壁。汽轮机在各种不同工况下工作时,汽缸内各级汽室总容有一定压力的蒸汽,蒸汽压力在汽缸上产生的静应力,在内外壁上均为拉应力。考虑到静应力的存在,启动加热时内壁承受的热压应力可略为缓和,而在减负荷和停机冷却时内壁承受的热拉应力则与静应力值迭加,很容易使综合拉应力值超过金属材料的允许值,引起汽缸裂纹。在负荷骤降,汽室维持较高汽
41、压,静应力值相当大时,这种危险性就更大。所以对减负荷、停机以及热态启动等可能引起汽缸法兰冷却的工况,温差控制指标应更严格一些。2)热膨胀的监测汽轮机在启、停和负荷变化过程中,汽缸转子或其它部件都要因温度变化而发生膨胀或收缩。保证汽缸以轴线、死点为基准在各方向匀称自由地膨胀和收缩,是防止产生热应力和热变形乃至机组振动的重要条件。汽缸的热膨胀数值除与汽缸长度以及材料有关外,还取决于汽轮机通流部分的热力过程,亦即汽缸各段的温度。由于汽轮机高中压缸的法兰远比缸壁厚得多,因此汽缸的膨胀往往取决于法兰各段的平均温度。汽轮机在运行中的温度场分布总有一定的规律性,总可以找出某一点作为汽缸膨胀的监视点,再通过计
42、算或实测找出监测点温度变化与汽缸膨胀值的对应关系,用以监视汽缸的膨胀是否正常。监视点通常都选取调节级处的法兰温度(对双层缸为外缸法兰温度),此温度与汽缸膨胀值大体呈直线变化关系。为了监视汽缸热膨胀,通常在汽轮机两侧均装设绝对膨胀指示仪表或热膨胀测量装置。需要说明的是:监视汽缸两侧膨胀均匀是很重要的,这是因为当两侧膨胀相差太大时将会引起机组中心偏斜导致汽缸轴向膨胀阻涩,严重时还会导致动静部分碰磨,引起机组的强烈振动,因此要经常对照汽缸两侧法兰的温度和两侧的膨胀指示值。对于仅在一侧安装膨胀指示表的机组,则应经常注意两侧法兰的温度不能相差过大,进行综合判断,防止汽轮机热膨胀偏差太大。3)热变形的监测
43、为防止汽缸变形过大,影响到动静各部分之间的间隙,要求汽缸具有足够的刚度。一般讲,刚度特性主要包括静刚度、动刚度和热变形等几项,静刚度是指半缸及合缸情况下载荷与变形的关系,对于轴承座与汽缸铸成一体的机组则还应施加转子的重量。冷态下抽真空与变形的关系也属于静刚度。动刚度是指抗振强度性能。热变形则主要指汽轮机在各种不同受热情况下各轴承座和基础台板负载分配的变化情况,特别是后汽缸温度变化的影响情况。汽轮机在启动和停机过程中很容易产生上下缸的温度差。由于下缸重量大、抽汽管道等散热较快,并且保温条件也不如上缸,所以通常总是上缸温度高于下缸温度,因此,汽缸产生向上拱起的变形,并使下缸底部动静部分之间的径向间
44、隙减小,当上下缸温差过大时,就会导致动静部分的径向摩擦。机组启停过程中,由于调节级温度变化较大,最大温差多发生在该处。通过计算和实测表明,上下缸温差每增加10,动静间隙约减少0.1mm。隔板汽封的径向间隙一般为0.40.7毫米,故一般规定上下缸温差值应控制在3550以下。当汽缸法兰内壁受热时,内外壁温差将引起法兰弯曲变形,此时横向法兰将向内弯曲引起两内侧间隙的减小,在轴向将使汽缸前后两端的横截面成为扁椭圆,而中间部分则成为立椭圆,从而使调节级及其后几级两侧径向间隙的减小,成为诱发动、静部分碰磨的主要因素。因此,监视和控制法兰内外壁温差也是控制汽缸热变形的有效手段。对于没有装设法兰内壁温度测点的
45、机组,可采用监视汽缸壁与法兰壁的温差来间接控制汽缸的热变形,因为这一温差与法兰沿宽度的温度差具有对应的关系,参照变动工况下汽缸内外壁的温差数值范围,再对照法兰内外壁温差的控制范围,一般取汽缸壁与法兰壁温差的控制值为7080(加热时)或4050(冷却时)。4)汽缸温度测点的布置监视汽缸的热力机械状态,除需在汽缸各段装设监视蒸汽压力值的压力仪表外,还需装设监视汽缸热膨胀值的绝对膨胀指示仪表,以及通过监视各点温度和各部温差来监视汽缸热应力、热变形用的温度测点。调节级汽室能准确灵敏地反映汽轮机的工作状态,且蒸汽的压力温度都比较高,是监视汽缸热力机械状态比较理想的区段,所以温度测点也较集中地布置在这一区
46、域。对再热机组中压缸温度也很高,所以常取中压缸第一级汽室前后布置温度测点,有的机组为了更好掌握汽缸状态还在抽汽口区段布置汽缸温度测点。汽缸由于运行不当所可能引起的问题主要是汽缸永久变形和裂纹。汽缸变形可造成水平或垂直法兰接合面不严密,在高压侧会向外漏汽,当漏汽部位接近前轴承时,蒸汽会漏入轴承使油质劣化;在低压侧,会使外部空气漏入影响凝汽器真空,当变形严重时还会使汽缸重量在机座上重新分配,引起汽轮机动静中心线的变化,甚至导致动静碰触,引起机组振动,损坏汽轮机。A、造成汽缸变形的主要原因有以下几个方面:1、汽缸长时间在超过汽缸材料允许温度下运行,造成汽缸蠕变,紧固件的应力松弛。2、 滑销系统卡涩,
47、不能保证正常膨胀,形成过大变形热应力。3、汽缸内隔板与汽缸径向间隙过小,隔板膨胀时顶住汽缸。4、汽缸外部保温不良或局部分离、脱落,造成长期不均匀受热或冷却。B、造成汽缸裂纹的主要原因有:1、汽缸多次承受冷热交替的运行方式,使应力超过薄弱地点的强度,产生疲劳裂断裂。2、长期强烈振动,使汽缸材料的应力超过疲劳极限。3、汽缸材料有缺陷或热处理不良,使汽缸局部承受较大内应力。4、运行方式不当,汽缸不均匀加热或冷却时,这些部位的应力有可能超过允许值。5、 转动部件损伤脱落如断叶片等,强力冲击造成汽缸裂纹。为保证汽缸安全可靠的运行,必须做到:严格控制进汽参数,不允许汽轮机长时间在超温条件下运行。负荷变化应
48、平稳缓慢些,防止由于运行方式的剧烈变化,使汽缸承受冷热交变作用。保持滑销系统结合面清洁,防止卡涩,并经常检查和监视汽缸各处的膨胀情况。保持汽缸保温完好,防止汽缸膨胀不均。经常注意检测机组振动情况,有异常振动或异音时,应及时分析处理。采用合理运行方式,尽可能使汽缸沿圆周均匀受热冷却,采用定滑定运行方式等。3.5 转子和叶片汽轮机是高速旋转的机械,转子在高温高压的环境下工作,转子的任何缺陷都会影响机组的安全经济运行。转子除了在动叶通道完成能量转换、主轴传递扭矩外,还要承受很大的离心力、各部件的温差引起的热应力,以及由于振动产生的动应力,因此,转子必须用性能优良、高强度、高韧性的金属制造。为了提高通流部分的能量转换效率,转子、静子部件间保持较小的间隙,要求转子部件加工精密,调整、安装精细准确。汽轮机在制造过程中,转子各项跳动指标均能控制在0.02mm以内,转子动叶片装配采用先进的计算机电子力矩秤进行叶片重力矩的测量和分配,成品转子进行高速和超速动平衡,确保轮系的不平衡量小于0.006mm。动叶片是汽轮机中最重要的零件之一,主要表现在:1、它作为蒸汽热能转换为机械能的主要作功部件,其结构型线、工作状态将直接对能量转换效率产生影响;2、数量最多,加工工作量相当大;3、它是汽轮机中承受应力最高的零件,又必须在相当恶劣的工作条件下工作,事故率很高。因此,叶片的结构、性能不仅涉及到设计制造,