211_离散型随机变量及其分布列(一).ppt

上传人:仙*** 文档编号:23334786 上传时间:2022-06-30 格式:PPT 页数:20 大小:573.01KB
返回 下载 相关 举报
211_离散型随机变量及其分布列(一).ppt_第1页
第1页 / 共20页
211_离散型随机变量及其分布列(一).ppt_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《211_离散型随机变量及其分布列(一).ppt》由会员分享,可在线阅读,更多相关《211_离散型随机变量及其分布列(一).ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 2.1.2 离散型随机变量离散型随机变量复习引入:复习引入:1、什么是随机事件?什么是基本事件?、什么是随机事件?什么是基本事件? 在一定条件下可能发生也可能不发生的事件,叫做在一定条件下可能发生也可能不发生的事件,叫做随机事件。试验的每一个可能的结果称为基本事件。随机事件。试验的每一个可能的结果称为基本事件。2、随机试验、随机试验(1)试验可以在相同的情形下试验可以在相同的情形下重复重复进行;进行;(2)试验所有可能的结果是试验所有可能的结果是明确明确的,并且的,并且不只一个不只一个;(3)每次试验总是恰好出现这些每次试验总是恰好出现这些可能结果中的一个可能结果中的一个,但在一次试验之前却

2、但在一次试验之前却不能肯定不能肯定这次这次试验试验的的结果结果会出现会出现哪一个哪一个引例:引例:(1)抛掷一枚骰子,可能出现的点数有几种情况?)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球)姚明罚球2次有可能得到的分数有几种情况?次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一思考:在上述试验开始之前,你能确定结果是哪一 种情况吗?种情况吗?1,2,3,4,5,60分分,1分分,2分分正面向上,反面向上正面向上,反面向上能否把掷硬能否把掷硬币的结果也币的结果也用数字来表

3、用数字来表示呢?示呢?分析:不行,虽然我们能够事先知道随机试验可能出现的分析:不行,虽然我们能够事先知道随机试验可能出现的所有所有结果,但在一般情况下,试验的结果是随机出现的。结果,但在一般情况下,试验的结果是随机出现的。 在前面的例子中,我们把随机试验的每一个结果都用在前面的例子中,我们把随机试验的每一个结果都用一个确定的数字来表示,这样试验结果的变化就可看成是一个确定的数字来表示,这样试验结果的变化就可看成是这些数字的变化。这些数字的变化。 若把这些数字当做某个变量的取值,则这个变量就叫若把这些数字当做某个变量的取值,则这个变量就叫做做随机变量随机变量,常用,常用X、Y、x x、h h 来

4、表示。来表示。一、随机变量的概念:一、随机变量的概念: 按照我们的定义,所谓的随机变量,就是随机试验按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。那么,随机变量的试验结果与实数之间的一个对应关系。那么,随机变量与函数有类似的地方吗?与函数有类似的地方吗? 随机变量是试验结果与实数的一种对应关系,而随机变量是试验结果与实数的一种对应关系,而函数是实数与实数的一种对应关系,它们都是一种映射函数是实数与实数的一种对应关系,它们都是一种映射 在这两种映射之间,在这两种映射之间, 试验结果的范围相当于函数的定义域,试验结果的范围相当于函数的定义域, 随机变量的取值结果相

5、当于函数的值域。随机变量的取值结果相当于函数的值域。所以我们也把随机变量的取值范围叫做随机变量的值域。所以我们也把随机变量的取值范围叫做随机变量的值域。 例例1、一个袋中装有一个袋中装有5个白球和个白球和5个黑球,若从中任取个黑球,若从中任取3个,个,则其中所含白球的个数则其中所含白球的个数x x 就就是一个随机变量,求是一个随机变量,求x x 的取值的取值范围,并说明范围,并说明x x 的不同取值所表示的事件。的不同取值所表示的事件。解:解: x x 的取值范围是的取值范围是 0,1,2,3 ,其中,其中 x x =0表示的事件是表示的事件是“取出取出0个白球,个白球,3个黑球个黑球”; x

6、 x =1表示的事件是表示的事件是“取出取出1个白球,个白球,2个黑球个黑球”; x x =2表示的事件是表示的事件是“取出取出2个白球,个白球,1个黑球个黑球”; x x =3表示的事件是表示的事件是“取出取出3个白球,个白球,0个黑球个黑球”;变式:变式:x x 3在这里又表示什么事件呢?在这里又表示什么事件呢?“取出的取出的3个球中,白球不超过个球中,白球不超过2个个” 写出下列各随机变量可能的取值,并说明它们各自写出下列各随机变量可能的取值,并说明它们各自所表示的随机试验的结果:所表示的随机试验的结果:(1)从)从10张已编号的卡片(从张已编号的卡片(从1号到号到10号)中任取号)中任

7、取1张,张, 被取出的卡片的号数被取出的卡片的号数x x ;(2)抛掷两个骰子,所得点数之和)抛掷两个骰子,所得点数之和Y;(3)某城市)某城市1天之中发生的火警次数天之中发生的火警次数X;(4)某品牌的电灯泡的寿命)某品牌的电灯泡的寿命X;(5)某林场树木最高达)某林场树木最高达30米,最低是米,最低是0.5米,则此林场米,则此林场 任意一棵树木的高度任意一棵树木的高度x x(x x=1、2、3、10)(Y=2、3、12)(X=0、1、2、3、)0,+)0.5,30思考:前思考:前3个随机变量与最后两个有什么区别?个随机变量与最后两个有什么区别?二、随机变量的分类:二、随机变量的分类:1、如

8、果可以按一定次序,把随机变量可能取的值一一、如果可以按一定次序,把随机变量可能取的值一一 列出,那么这样的随机变量就叫做列出,那么这样的随机变量就叫做离散型随机变量离散型随机变量。(如掷骰子的结果,城市每天火警的次数等等)(如掷骰子的结果,城市每天火警的次数等等)2、若随机变量可以取某个区间内的一切值,那么这样的、若随机变量可以取某个区间内的一切值,那么这样的 随机变量叫做随机变量叫做连续型随机变量连续型随机变量。(如灯泡的寿命,树木的高度等等)(如灯泡的寿命,树木的高度等等)注意:注意:(1)随机变量不止两种,我们只研究离散型随机变量;)随机变量不止两种,我们只研究离散型随机变量;(2)变量

9、离散与否与变量的选取有关;)变量离散与否与变量的选取有关;比如:对灯泡的寿命问题,可定义如下离散型随机变量比如:对灯泡的寿命问题,可定义如下离散型随机变量0, 10001, 1000Y 寿寿命命小小时时寿寿命命小小时时 下列试验的结果能否用离散型随机变量表示?下列试验的结果能否用离散型随机变量表示?(1)已知在从汕头到广州的铁道线上,每隔)已知在从汕头到广州的铁道线上,每隔50米有一个米有一个 电线铁站,这些电线铁站的编号;电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有)任意抽取一瓶某种标有2500ml的饮料,其实际量的饮料,其实际量 与规定量之差;与规定量之差;(3)某城市)某城市

10、1天之内的温度;天之内的温度;(4)某车站)某车站1小时内旅客流动的人数;小时内旅客流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格)在优、良、中、及格、不及格5个等级的测试中,个等级的测试中, 某同学可能取得的等级。某同学可能取得的等级。 离散型离散型(1).(4).(5).(6). 连续型连续型(2).(3)10 注注3 3: 若若 是随机变量,则是随机变量,则 (其中(其中a、b是常数)也是随机变量是常数)也是随机变量 x xba x xh h注注1 1:随机变量分为离散型随机变量和连续型随机变量分为离

11、散型随机变量和连续型随机变量。随机变量。注注2 2:某些随机试验的结果不具备数量性质,某些随机试验的结果不具备数量性质,但仍可以用数量来表示它。但仍可以用数量来表示它。说明说明: 随机变量即是随机试验的试验结果和实数之间的一种对应关系.写出下列各随机变量可能的取值写出下列各随机变量可能的取值.(1)一个袋中装有)一个袋中装有5个白球和个白球和5个黑球,从个黑球,从中任取中任取3个,其中所含白球数个,其中所含白球数(2)接连不断地射击,首次命中目标需要的射击次数)接连不断地射击,首次命中目标需要的射击次数(3)某一自动装置无故障运转的时间)某一自动装置无故障运转的时间(4)江西九江市长江水位监测

12、站所测水位在)江西九江市长江水位监测站所测水位在(0,29这一范这一范围变化,该水位站所测水位围变化,该水位站所测水位xxxx(1、2、3、n、)x(取内的一切值)(取内的一切值)x,0(取内的一切值)(取内的一切值)0, 29xx(0、1、2、3)离散型离散型连续型连续型1.1.将一颗均匀骰子掷两次,不能作为随机变量的是将一颗均匀骰子掷两次,不能作为随机变量的是( )( )(A)两次出现的点数之和 (B)两次掷出的最大点数(C)第一次减去第二次的点数差 (D)抛掷的次数D2、把一枚硬币先后抛掷两次,如果出现两个正面得、把一枚硬币先后抛掷两次,如果出现两个正面得5分,出分,出现两个反面得现两个

13、反面得-3分,其他结果得分,其他结果得0分,用分,用X表示得分的分值,表示得分的分值,列表写出可能出现的结果与对应的列表写出可能出现的结果与对应的X值。值。 若用若用X表示抛掷一枚质地均匀的骰子所得的点数,表示抛掷一枚质地均匀的骰子所得的点数,请把请把X取不同值的概率填入下表,并求判断下列事件发生取不同值的概率填入下表,并求判断下列事件发生的概率是多少?的概率是多少?(1)X是偶数是偶数;(;(2) X3;X123456P解:解:P(X是偶数是偶数)=P(X=2)+P(X=4)+P(X=6)12 P(X3)=P(X=1)+P(X=2)13 616161616161三、离散型随机变量的分布列:三

14、、离散型随机变量的分布列:一般地,若离散型随机变量一般地,若离散型随机变量X 可能取的不同值为:可能取的不同值为: x1,x2,xi,xnX取每一个取每一个xi (i=1,2,n)的概率的概率P(X=xi)=Pi,则称表:,则称表:Xx1x2xiPP1P2Pi为离散型随机变量为离散型随机变量X的的概率分布列概率分布列,简称为,简称为X的分布列的分布列.有时为了表达简单,也用等式有时为了表达简单,也用等式 P(X=xi)=Pi i=1,2,n来表示来表示X的分布列的分布列概率分布还经常用图象来表示概率分布还经常用图象来表示.O 1 2 3 4 5 6 7 8x xp0.10.2(1)离散型随机变

15、量的分布列完全描述了由这个随机离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象。变量所刻画的随机现象。(2)函数可以用解析式、表格或图象表示,离散型随函数可以用解析式、表格或图象表示,离散型随机变量可以用分布列、等式或图象来表示。机变量可以用分布列、等式或图象来表示。可以看出可以看出 的取值的取值范围范围1,2,3,4,5,6,它取每一个值的概它取每一个值的概率都是率都是 。x16离散型随机变量的分布列应注意问题:离散型随机变量的分布列应注意问题:Xx1x2xiPP1P2Pi1、分布列的构成:、分布列的构成:(1)列出了离散型随机变量)列出了离散型随机变量X的所有取值;的所有取值

16、;(2)求出了)求出了X的每一个取值的概率;的每一个取值的概率;2、分布列的性质、分布列的性质:0,1,2,ipi (1 1)1211ninipppp (2 2)求离散型随机变量分布列的基本步骤:求离散型随机变量分布列的基本步骤:(1)确定随机变量的所有可能的值)确定随机变量的所有可能的值xi(2)求出各取值的概率)求出各取值的概率P(X=xi)=pi(3)列出表格)列出表格定值定值 求概率求概率 列表列表例:例:抛掷两枚骰子,点数之和为抛掷两枚骰子,点数之和为,则,则可能可能取的值有:取的值有:2,3,4,12.的概率分布为:的概率分布为:23456789101112361361362362363363364364365365366课堂练习:课堂练习:0.30.16P3210-110a2a5a2、若随机变量、若随机变量的分布列如下表所示,则常数的分布列如下表所示,则常数a=_35C课堂练习:课堂练习:0.88

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁