《初中一年级数学下册第五章相交线与平行线第一课时课件.ppt》由会员分享,可在线阅读,更多相关《初中一年级数学下册第五章相交线与平行线第一课时课件.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第五章第五章 相交线与平行线相交线与平行线复复 习一习一重庆市渝北区 渝开学校知识结构知识结构相交线相交线两条直线相交邻补角、对顶角对顶角相等垂线及其性质点到直线的距离两条直线被第三条直线所截同位角、内错角、同旁内角1. 互为邻补角互为邻补角:2. 对顶角对顶角: 12343. 邻补角的性质邻补角的性质: 同角的补角相等。4. 对顶角性质对顶角性质:对顶角相等。132312( 与互补,与互补同角的补角相等)两个特征:(1) 具有公共顶点; (2) 角的两边互为反向延长线。ab相交相交 1.1.直线直线ABAB、CDCD相交与于相交与于O,O,图中有图中有几对对顶角?邻补角几对对顶角?邻补角?
2、? 当一个角确定了当一个角确定了, ,另外三个角的大另外三个角的大小确定了吗小确定了吗? ?OABCD12342.2.直线直线ABAB、CDCD、EFEF相交与于相交与于O,O,图中图中有几对对顶角?有几对对顶角?AOCAOC的对顶角是的对顶角是_COFCOF的对顶角是的对顶角是_AOCAOC的邻补角是的邻补角是_ 。EODEOD的邻补角是的邻补角是_ 。BODBODDOEDOECOB, AODCOB, AODDOF, COEDOF, COE1.:2:3ABCDOAOCAODBOD例 直线与相交于 ,求的度数。ABCDO0000.227272:72AOCXAOCXBODAOCBOD 000解设
3、,则 AOD=3X根据邻补角的定义可得方程:2X+3X=180解得X=36答的度数为在解在解决与角的计算有关决与角的计算有关的问题时,经常用的问题时,经常用到代数方法。到代数方法。例2.已知直线AB、CD、EF相交于点O,009036DOEAOE,BOEBOC求、的度数。OABCDEF00000000.180361803614490126126AOBAOEBOEAOEBOEAOEBOEDOEAODAOEDOEBOCAODBOCAOD 解是直线与是互为邻补角又又又与是对顶角1.1.垂线的定义垂线的定义: : 两条直线相交,所构成的四个角中,有一个角是 90时,就说这两条直线互相垂直。其中一条直线
4、叫做另一条直线的垂线。它们的交点叫垂足。2. 垂线的性质垂线的性质: (1)过一点有且只有一条直线与已知直线垂直。 性质(2): 直线外一点与直线上各点连结的所有线段中,垂线段最短。简称:垂线段最短。3.点到直线的距离点到直线的距离: 从直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。4.如遇到线段与线段,线段与射线,射线与射线,线段或射线与直线垂直时,特指它们所在的直线互相垂直。特指它们所在的直线互相垂直。5.垂线是直线,垂线段特指一条线段是图形,点到直线距离是指垂线段的长度,是指一个数量,是有单位的。你能量出你能量出C C到到ABAB的距离的距离,B,B到到ACAC的距的距离离,
5、A,A到到BCBC的距离吗的距离吗? ? A D C B E F1.5ABCDOOEABODOECOEAOD 例 直线、相交于点 ,垂足为 ,且。求的度数。ABCDOE此题需要正确地此题需要正确地应用、对顶角、应用、对顶角、邻补角、垂直的邻补角、垂直的概念和性质。概念和性质。0000:551803090120DOECOECOECOECOEOEABBOEBOCBOECOE 00解 由邻补角的定义知:COE+ DOE=180,又由又由对顶角相等得:AOD= BOC=1202.:32:13OAOCOBODAOBBOCCOD例 已知,求的度数。OADCB由垂直先找到由垂直先找到 的的角,再根据角之间角
6、,再根据角之间的关系求解。的关系求解。000000000.:9090:32:1332213 22690902664OAOCAOCAOBBOCAOBBOCAOBxxBOCOBODBODCOD0解由知即由,设,则 BOC=13x列方程:32x+13x=90又0901. 平行线的概念平行线的概念: 在同一平面内,不相交的两条直线叫做在同一平面内,不相交的两条直线叫做平行线。平行线。2. 两直线的位置关系两直线的位置关系: 在同一平面内,两直线的位置关系只有两在同一平面内,两直线的位置关系只有两 种种:(1)相交相交; (2)平行。平行。3. 平行线的基本性质平行线的基本性质: (1) 平行公理平行公
7、理(平行线的存在性和唯一性平行线的存在性和唯一性) 经过直线外一点,有且只有一条直线与已知直线平行。经过直线外一点,有且只有一条直线与已知直线平行。 (2) 推论推论(平行线的传递性平行线的传递性) 如果两条直线都和第三条直线平行,如果两条直线都和第三条直线平行, 那么这两条直线也互相平行。那么这两条直线也互相平行。4.同位角、内错角、同旁内角的概念同位角、内错角、同旁内角的概念 同位角、内错角、同旁内角,指的是一条直线分别与两条直线同位角、内错角、同旁内角,指的是一条直线分别与两条直线 相交构成的八个角中,相交构成的八个角中,不共顶点的角之间的特殊位置关系。不共顶点的角之间的特殊位置关系。它
8、它 们与对顶角、邻补角一样,们与对顶角、邻补角一样,总是成对存在着的。总是成对存在着的。 同位角的位置特征是同位角的位置特征是: (1)在截线的同旁,在截线的同旁,(2)被截两直线的同方向。被截两直线的同方向。内错角的位置特征是内错角的位置特征是: (1)在截线的两旁,在截线的两旁,(2)在被截两直线之间。在被截两直线之间。同旁内角的位置特征是同旁内角的位置特征是: (1)在截线的同旁,在截线的同旁,(2)在被截两直线之间在被截两直线之间。判定两直线平行的方法有三种判定两直线平行的方法有三种:(1)定义法定义法;在同一平面内不相交的两条直线是平行线。在同一平面内不相交的两条直线是平行线。(2)
9、传递法传递法;两条直线都和第三条直线平行两条直线都和第三条直线平行,这两条直线也平行。这两条直线也平行。(3)三种角判定(3种方法): 同位角相等,两直线平行。 内错角相等,两直线平行。 同旁内角互补,两直线平行。在这五种方法中,定义一般不常用。在这五种方法中,定义一般不常用。读下列语句读下列语句,并画出图形并画出图形 点点p是直线是直线AB外的一点外的一点,直线直线CD经过点经过点P,且与直且与直线线AB平行平行; 直线直线AB、CD是相交直线是相交直线,点点P是直线是直线AB外的一点外的一点,直线直线EF经过点经过点P与直线与直线AB平行平行,与直线与直线CD交于交于E.PABCDCDAB
10、PEF练练 一一 练练如图:直线如图:直线a、b被直线被直线 l 截的截的8个角中个角中 同位角:同位角:1与与5 , 2与与6 ,3与与7 , 4与与8. 内错角:内错角:3与与5 , 4与与6.同旁内角:同旁内角: 4与与5 , 3与与6. 14328765balABDCFE12345 6789101112练一练(1 1)1 1和和 9 9是由直线是由直线 、 被直线被直线 所截成的所截成的 角角 ; (2 2)6 6和和 1212是由直线是由直线 、 被直线被直线 所截成的所截成的 角角 ; (3 3)4 4和和 6 6是由直线是由直线 、 被直线被直线 所截成的所截成的 角角 ; (4
11、 4)由直线)由直线ABAB、CDCD被直线被直线EF EF 所截成的同位角有所截成的同位角有 ; (5 5)7 7和和 1212是是 角角 ; 在判断两个角时一在判断两个角时一定要先知道由哪两定要先知道由哪两条直线被哪条直线条直线被哪条直线所截呦!所截呦!ABCDEF同位同位ABEFCD内错内错ABCDEF同旁内同旁内1 1 和和9 9、 4 4和和 1212、2 2和10、 3 和11同旁内同旁内例例1. 1与哪个角是内错角?与哪个角是内错角? ACBDE12答:答: EAC答:答: DAB答:答: BAC,BAE , 2 1与哪个角是同旁内角?与哪个角是同旁内角?2与哪个角是内错角与哪个角是内错角?课本P.8 第5和第8小题;