《12.2 第2课时 一次函数的图象和性质.pptx》由会员分享,可在线阅读,更多相关《12.2 第2课时 一次函数的图象和性质.pptx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第12章 一次函数12.2 一次函数,第2课时 一次函数的图象和性质,关注“初中教师园地”公众号2019秋季各科最新备课资料陆续推送中快快告诉你身边的小伙伴们吧,学习目标,1.了解一次函数的图象与性质(重点)2.能灵活运用一次函数的图象与性质解答有关问题(难点),导入新课,复习引入,形如 的函数,叫做正比例函数;,形如 的函数,叫做一次函数;,当b=0时,y=kx+b就变成了 ,所以说正比例函数是一种特殊的一次函数.,正比例函数的图象是一条经过 点的 .,y=kx(k是常数,k0),y=kx+b(k,b是常数,k0),y=kx,原,直线,正比例函数,解析式 y =kx(k0),性质:k0,y
2、随x 的增大而增大;k0,y 随 x 的增大而减小,一次函数,解析式 y =kx+b(k0),针对函数 y =kx+b,要研究什么?怎样研究?,研究函数 y =kx+b(k0)的图象和性质:研究方法:画图象观察图象变量(坐标)意义解释,讲授新课,一次函数的图象的画法,在上一课的学习中,我们学会了正比例函数图象的画法,分为三个步骤,列表,描点,连线,那么你能用同样的方法画出一次函数的图象吗?,-3,-2,-1,5,4,3,2,1,o,-2,-3,-4,-5,2,3,4,5,x,y,1,y=2x1,描点、连线,一次函数的图象是什么?,-1,列表,例1:画出一次函数y=2x1的图象,总结归纳,一次函
3、数y=kxb的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了.一般过(0,b)和(1,k+b)或( ,0),与y轴交于点(0,b),b叫做直线 y=kx+b在y轴上的截距,例1 画出直线 ,并求它的截距.,解:对于 , 过(0,-1),( ,0)即得 的图象如图所示,它的截距是-1,典例精析,-3,O,-2,2,3,1,2,3,-1,-1,-2,x,1,y,O,用你认为最简单的方法画出下列函数的图象: (1) y=-2x-1;(2) y=0.5x+1,-1,-3,1,y=-2x-1,做一做,1.5,y=0.5x+1,也可以先画直线 y=-2x与 y=0.5x,再
4、分别平移它们,也能得到直线y=-2x-1与 y=0.5x+1,.,.,.,.,x,y,2,O,.,.,.,活动:请大家用描点法在同一坐标系内画出一次函数y=x+2,y=x-2的图象.,0,-3,1,-4,2,-2,3,-1,4,0,.,.,.,y=x+2,y=x-2,思考:观察它们的图象有什么特点?,y=x,y=x+2,y=x-2,y,2,O,观察三个函数图象的平移情况:,探究归纳,把一次函数y=x+2,y=x-2的图象与y=x比较,发现:1. 这三个函数的图象形状都是 ,并且倾斜程度 _2. 函数y=x的图象经过原点,函数y=x+2的图象与y轴交于点 ,即它可以看作由直线y=x向 平移 个单
5、位长度而得到函数y=x-2的图象与y轴交于点 ,即它可以看作由直线y=x向_ 平移_个单位长度而得到,直线,相同,(0,2),上,2,(0,-2),下,2,比较三个函数的解析式, 相同, 它们的图象的位置关系是 .,自变量系数k,平行,一次函数y=kx+b(k0)的图象经过点(0,b),可以由正比例函数y=kx的图象平移 个单位长度得到(当b0时,向 平移;当b0时,向 平移).,下,上,思考:与x轴的交点坐标是什么?,要点归纳,(1)将直线y2x向上平移2个单位后所得图象对应的函数表达式为()Ay2x1 By2x2Cy2x1 Dy2x2(2)将正比例函数y6x的图象向上平移,则平移后所得图象
6、对应的函数表达式可能是_(写出一个即可),练一练,B,y6x+3,一次函数的性质,画一画1:在同一坐标系中作出下列函数的图象.,(1),(2),(3),-3,O,-2,2,3,1,2,3,-1,-1,-2,x,y,1,思考:k,b的值跟图象有什么关系?,画一画2: 在同一坐标系中作出下列函数的图象.,(1),(2),(3),-3,o,-2,2,3,1,2,3,-1,-1,-2,x,y,1,思考:k,b的值跟图象有什么关系?,在一次函数y=kx+b中,当k0时,y的值随着x值的增大而增大;当k,k 0,b 0,k 0,b 0,k 0,b 0,k 0,b 0,k 0,b 0,0时,直线经过 一、二
7、、四象限;, b0时,直线经过一、二、三象限;, b0,解得,(2)由题意得1-2m0且m-10,即,(3)由题意得1-2m0且m-10,解得,1. 一次函数y=x-2的大致图象为( ),C,当堂练习,2.下列函数中,y的值随x值的增大而增大的函数是( ). A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-2,C,3.直线y=3x-2可由直线y=3x向 平移 单位得到.,4.直线y=x+2可由直线y=x-1向 平移 单位得到.,下,2,上,3,5.点A(-1,y1),B(3,y2)是直线y=kx+b(k”或“,6.已知一次函数y(3m-8)x1-m图象与 y轴交点在x轴下方,且y随x的增大而减小,其中m为整数,求m的值 .,解: 由题意得 ,解得,又m为整数,m2,课堂小结,一次函数函数的图象和性质,当k0时,y的值随x值的增大而增大;当k0, b0时,经过一、二、三象限;当k0 ,b0时,经过 一、二、四象限;当k0 ,b0时,经过二、三、四象限.,图象,性质,