《131函数的单调性和最大小值(2).ppt》由会员分享,可在线阅读,更多相关《131函数的单调性和最大小值(2).ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-函数的最大(小)值画出下列函数的草图,并根据图象解答下列问题:画出下列函数的草图,并根据图象解答下列问题: 1.说出说出y=f(x)的单调区间,以及在各单调区间上的单调性;的单调区间,以及在各单调区间上的单调性;2.指出图象的最高点或最低点,你是如何理解函数图象最高指出图象的最高点或最低点,你是如何理解函数图象最高点的?点的? (1) (2) ( )230,3f xxx 12)(2xxxfxyo2oxy-11最大值最大值 一般地,设函数一般地,设函数y=f(x)的定义域为的定义域为I,如果,如果存在实数存在实数M满足:满足: (1)对于任意的)对于任意的xI,都有,都有f(x)M; (2)存
2、在)存在x0I,使得,使得f(x0) = M那么,称那么,称M是函数是函数y=f(x)的的最大值最大值 最大值的几何意义:函数图像上最高点的纵坐标。最大值的几何意义:函数图像上最高点的纵坐标。类比最大值的定义,请你给出最小值的定义。类比最大值的定义,请你给出最小值的定义。2最小值最小值 一般地,设函数一般地,设函数y=f(x)的定义域为的定义域为I,如,如果存在实数果存在实数M满足:满足: (1)对于任意的)对于任意的xI,都有,都有f(x)M; (2)存在)存在x0I,使得,使得f(x0) = M那么,称那么,称M是函数是函数y=f(x)的的最小值最小值 2.2.函数最大(小)值应该是所有函
3、数值中函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的最大(小)的,即对于任意的xI,都有,都有f(x)M(f (x)M) 注注 意:意:1.1.函数最大(小)值首先应该是某一个函数函数最大(小)值首先应该是某一个函数值,值, 即存在即存在x0I,使得,使得f (x0) = M;3.3.最大值和最小值统称为最值。最大值和最小值统称为最值。.)(1, 1)(,),()(12的最大值为函数则都有任意、函数xfxfRxRxxxf判断以下说法是否正确。判断以下说法是否正确。.)(,)(,)(,)(,),(,)(3003020132100yxfyxfyxfyxfxxxyxPbaxf的最小值为
4、则函数有自变量对于),已知点的定义域为(、函数2、设函数 ,则 成立吗? 的最大值是2吗?为什么?2( )1f xx ( )2f x ( )f x例3 “菊花菊花”烟花是最壮观的烟花之一烟花是最壮观的烟花之一. .制造时一般是期制造时一般是期望在它达到最高点时爆裂望在它达到最高点时爆裂. . 如果在距地面高度如果在距地面高度h m与时间与时间t s之间的之间的关系为关系为:h(t)= -4.9t2+14.7t+18 ,那么烟花冲出后什么时候是那么烟花冲出后什么时候是它的爆裂的最佳时刻?这时它的爆裂的最佳时刻?这时距地面的高度是多少(精确距地面的高度是多少(精确到到1m1m)解:作出函数h(t)
5、= -4.9t2+14.7t+18的图象(如图).显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度. 由于二次函数的知识,对于h(t)=-4.9t2+14.7t+18,我们有: 29)9 . 4(47 .1418)9 . 4(45 . 1)9 . 4(27 .142ht 时,函数有最大值当 于是,烟花冲出后1.5秒是它爆裂的最佳时刻,这时距地面的高度为29 m.例3 求函数 在区间2,6上的最大值和最小值 12xy解:设x1,x2是区间2,6上的任意两个实数,且x1x2,则) 1)(1()(2 ) 1)(1()1() 1(21212)()
6、(121212122121xxxxxxxxxxxfxf由于2x1x20,(x1-1)(x2-1)0,于是)()(, 0)()(2121xfxfxfxf 即所以,函数 是区间2,6上的减函数.12xy 因此,函数 在区间2,6上的两个端点上分别取得最大值和最小值,即在点x=2时取最大值,最大值是2,在x=6时取最小值,最小值为0.4 .12xy12xy(二)(二)判断函数的判断函数的最大最大( (小小) )值值的方法的方法 1.利用二次函数二次函数的性质(配方法配方法)求函数的最大(小)值 2. 利用图象图象求函数的最大(小)值 3.利用函数单调性函数单调性的判断函数的最大(小)值 如果函数如果
7、函数y=f(x)在区间在区间a,b上单调递上单调递增增,则函数,则函数y=f(x)在在x=a处有处有最小值最小值f(a),在在x=b处有处有最大值最大值f(b) ; 如果函数如果函数y=f(x)在区间在区间a,b上单调递上单调递减减,在区间,在区间b,c上上单调递单调递增增则函数则函数y=f(x)在在x=b处有处有最小值最小值f(b); 例例3 写出函数写出函数 的单调的单调区间,并求出最值。区间,并求出最值。2321yxx2( )23f xxx 2,0 x 例例4 已知二次函数已知二次函数 (1)当)当 时,求时,求 的最值。的最值。( )f x( )f x 2,3x (2)当)当 时,求时
8、,求 的最值。的最值。例例5 5 求下列函数的最小值求下列函数的最小值22221(1)( )(0)4(2)( )22 1,1xxf xxxf xxaxx 提示:提示:(1 1)将将f(x)变形变形用定义法证明用定义法证明f(xf(x) )的单调性的单调性求求f(xf(x) )的的最小值最小值(2 2)f(x)求求f(xf(x) )的的对称轴对称轴讨论对称轴讨论对称轴与所给区间与所给区间的位置关系的位置关系结论结论 求函数求函数 的最值。的最值。( ) |1|2|f xxx 设f(x)是定义在R上的函数,对m,nR恒有 f(m+n)=f(m)f(n),且当x0时,0f(x)0(3) 求证:f(x)在R上是减函数。