《双曲线几何性质1 (2).ppt》由会员分享,可在线阅读,更多相关《双曲线几何性质1 (2).ppt(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、222bac | |MF1|- -|MF2| | =2a( 2a1abtanba 21baace 222bac二四个参数中,知二可求、在ecba(4)等轴双曲线的离心率等轴双曲线的离心率e= ?2( 5 )的双曲线是等轴双曲线离心率2exyo的简单几何性质二、导出双曲线)0, 0( 12222babxay-aab-b(1)范围)范围:ayay,(2)对称性)对称性:关于关于x轴、轴、y轴、原点都对称轴、原点都对称(3)顶点)顶点: (0,-a)、(0,a)(4)渐近线)渐近线:xbay(5)离心率)离心率:ace 关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性
2、顶点顶点离心率离心率1 (0)xyabab22222222A1(- a,0),),A2(a,0)A1(0,-a),),A2(0,a) 1 00yx(a,b)ab 2 22 22 22 2 yaya x R ,或或关于关于x轴、轴、y轴、原点对称轴、原点对称 (1)ceea 渐进线渐进线ayxb .yB2A1A2 B1 xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c) x axa y R ,或或 (1)ceea byxa 关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率yxOA2B2A1
3、B1.F1F2yB2A1A2 B1 xO.F2F1)0( 1babyax2 22 22 22 2bybaxa A1(- a,0),),A2(a,0)B1(0,-b),),B2(0,b)) 10( eaceF1(-c,0) F2(c,0)F1(-c,0)F2(c,0),b(abyax00 1 2 22 22 22 2Ryaxax, 或或关于关于x轴、轴、y轴、原点对称轴、原点对称A1(- a,0),),A2(a,0)) 1( eace渐进线渐进线无无xaby可得实半轴长可得实半轴长a=4,虚半轴长虚半轴长b=3焦点坐标为(焦点坐标为(0,-5)、()、(0,5)45 ace离离心心率率xy34
4、渐进线方程为渐进线方程为解:把方程化为标准方程解:把方程化为标准方程221169yx例例4、.45516:)05()(的轨迹,求点距离的比是常数的的距离和它到定直线,与定点,点MxlFyxM解:解:xyl.FOM的距离,则到直线是点设lMd45|dMFd.45|516|)5(22xyx即化简.14416922yx191622yx方程化为.12222byax的方程为解:依题意可设双曲线8162aa,即10,45cace又3681022222acb1366422yx双曲线的方程为xy43渐近线方程为)0 ,10(),0 ,10(21FF 焦点.4516线和焦点坐标程,并且求出它的渐近出双曲线的方轴上,中心在原点,写焦点在,离心率离是已知双曲线顶点间的距xe 例例2: