高中数学向量教案.docx

上传人:安*** 文档编号:18921550 上传时间:2022-06-03 格式:DOCX 页数:24 大小:24.94KB
返回 下载 相关 举报
高中数学向量教案.docx_第1页
第1页 / 共24页
高中数学向量教案.docx_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《高中数学向量教案.docx》由会员分享,可在线阅读,更多相关《高中数学向量教案.docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高中数学向量教案高中数学向量教案【篇一:高中数学必修4第二章平面向量教案完好版】高中数学必修4第二章平面向量教案12课时)本章内容介绍向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深入的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行平移、类似、垂直、勾股定理就可转化为向量的加减法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数

2、量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.本节从物理上的力和位移出发,抽象出向量的概念,并讲明了向量与数量的区别,然后介绍了向量的一些基本概念.让学生对整章有个初步的、全面的了解.第1课时2.1平面向量的实际背景及基本概念教学目的:1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;把握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理

3、解并把握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联络.学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、情景设置:如图,老鼠由a向西北逃窜,猫在b处向东追去,设问:猫能否追到老鼠?画图结论:猫的速度再快也没用,由于方向错了.分析:老鼠逃窜的道路ac、猫追逐的道路bd实际上都是有方向、cbd有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只要大小没有方向?二

4、、新课学习:一向量的概念:我们把既有大小又有方向的量叫向量二请同学阅读课本后回答:可制作成幻灯片1、数量与向量有何区别?2、怎样表示向量?3、有向线段和线段有何区别和联络?分别能够表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、知足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向一样或相反,这组向量有什么关系?7、假如把一组平行向量的起点全部移到一点o,这是它们是不是平行向量?这时各向量的终点之间有什么关系?三探究学习1、数量与向量的区别:数量只要大小,是一个代数量,能够进行代数运算、比拟大小;向量有方向,大小,双重性,不能比拟大小.2

5、.向量的表示方法:用有向线段表示;用字母、黑体,印刷用等表示;用有向线段的起点与终点字母:ab;向量ab的大小长度称为向量的模,记作|ab|.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:1向量只要大小和方向两个要素,与起点无关,只要大小和方向一样,则这两个向量就是一样的向量;2有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向一样,也是不同的有向线段.4、零向量、单位向量概念:长度为0的向量叫零向量,记作0.0的方向是任意的.注意0与0的含义与书写区别.长度为1个单位长度的向量,叫单位向量.aa(起点)b终点讲明:零向量、单位向量的定

6、义都只是限制了大小.5、平行向量定义:方向一样或相反的非零向量叫平行向量;我们规定0与任一向量平行.讲明:1综合、才是平行向量的完好定义;2向量、平行,记作.6、相等向量定义:长度相等且方向一样的向量叫相等向量.讲明:1向量与相等,记作;2零向量与零向量相等;3任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.7、共线向量与平行向量关系:平行向量就是共线向量,这是由于任一组平行向量都可移到同一直线上与有向线段的起点无关.讲明:1平行向量能够在同一直线上,要区别于两平行线的位置关系;2共线向量能够互相平行,要区别于在同一直线上的线段的位置关系.四理解和稳固:例1书本8

7、6页例1.例2判定:1平行向量能否一定方向一样?不一定2不相等的向量能否一定不平行?不一定3与零向量相等的向量必定是什么向量?零向量4与任意向量都平行的向量是什么向量?零向量5若两个向量在同一直线上,则这两个向量一定是什么向量?平行向量6两个非零向量相等的当且仅当什么?长度相等且方向一样7共线向量一定在同一直线上吗?不一定例3下列命题正确的是a.与共线,与共线,则与c也共线b.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点c.向量与不共线,则与都是非零向量d.有一样起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以a不正确;由于数学中研究的向量是自由向量,所以两个相等的非零

8、向量能够在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以b不正确;向量的平行只要方向一样或相反即可,与起点能否一样无关,所以不正确;对于c,其条件以否认形式给出,所以可从其逆否命题来入手考虑,假若与不都是非零向量,即与至少有一个是零向量,而由零向量与任一向量都共线,可有与共线,不符合已知条件,所以有与都是非零向量,所以应选c.例4如图,设o是正六边形abcdef的中心,分别写出图中与向量oa、ob、oc相等的向量.变式一:与向量长度相等的向量有多少个?11个变式二:能否存在与向量长度相等、方向相反的向量?存在变式三:与向量共线的向量有哪些?cb,do,fe课堂练习

9、:1判定下列命题能否正确,若不正确,请简述理由.向量ab与cd是共线向量,则a、b、c、d四点必在一直线上;单位向量都相等;任一向量与它的相反向量不相等;四边形abcd是平行四边形当且仅当abdc一个向量方向不确定当且仅当模为0;共线的向量,若起点不同,则终点一定不同.解:不正确.共线向量即平行向量,只要求方向一样或相反即可,并不要求两个向量ab、ac在同一直线上.不正确.单位向量模均相等且为1,但方向并不确定.不正确.零向量的相反向量还是零向量,但零向量与零向量是相等的.、正确.不正确.如图ac与bc共线,虽起点不同,但其终点却相2书本88页练习三、小结:1、描绘向量的两个指标:模和方向.2

10、、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.四、课后作业:书本88页习题2.1第3、5题同.第2课时2.2.1向量的加法运算及其几何意义教学目的:1、把握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、通过将向量运算与熟悉的数的运算进行类比,使学生把握向量加法运算的交换律和结合律,并会用它们进行向量计算,浸透类比的数学方法;教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点:理解向量加法的定义.学法:数能进行运算,向量能否也能进行运算呢?数的加

11、法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形把握向量加法的三角形法则和平行四边形法则.联络数的运算律理解和把握向量加法运算的交换律和结合律.教具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、设置情景:1、温习:向量的定义以及有关概念强调:向量是既有大小又有方向的量.长度相等、方向一样的向量相等.因而,我们研究的向量是与起点无关的自由向量,即任何向量能够在不改变它的方向和大小的前提下,移到任何位置2、情景设置:1某人从a到b,再从b按原方向到c,则两次的位移和:ab+bc=

12、ac2若上题改为从a到b,再从b按反方向到c,则两次的位移和:ab+bc=ac3某车从a到b,再从b改变方向到c,则两次的位移和:ab+bc=acabc4船速为ab,水速为bc,则两速度和:ab+bc=ac二、探索研究:、向量的加法:求两个向量和的运算,叫做向量的加法.abcabc【篇二:(平面向量的加法教案)】(平面向量的加法)教案课题名称:平面向量的加法教材版本:苏教版(中职数学基础模块*下册)年级:高一撰写老师:徐艳一、理解课程要求教材分析:(1)地位和作用(平面向量的加法)是苏教版(中职数学基础模块*下册)第七章平面向量第二节平面向量的加法减法和数乘向量的第1课时,主要内容为向量加法的

13、三角形法则和运算律.向量的加法是向量线性运算中最基本的一种运算,既是对平面向量这一章第一节向量概念的稳固和应用,也是向量运算的起始课,为后继学习向量的减法运算及其几何意义向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量和立体几何中有很普遍的应用.因而,本节学习起着承上启下的作用.2教学内容及教材处理教材是从两岸直航前后飞机发生的位移作为问题情境引入,让学生结合对平面向量概念的理解感受不同方式的位移对结果的影响,初步体会向量相加的概念,引发考虑,引出新知.同时让学生知道数学源于生活并能解决生活中实际问题,更容易激发学习兴趣和激情.教学目的:1知识目的理解向

14、量加法的含义,学会用代数符号表示两个向量的和向量;把握向量加法的三角形法则,学会求作两个向量的和;把握向量加法的交换律和结合律,学会运用它们进行向量运算.2能力目的经历向量加法的概念三角形法则的建构经过;通过探究、考虑、沟通、解决问题等方式锻炼培养学生的逻辑思维能力、运算能力.(3)情感目的努力运用多种形象、直观和生动的教学方法,通过深化浅出的教学,让学生主动学习数学,体验学习数学的乐趣和成功,使学生产生“我努力,我能行的乐观心态.二、分析学生背景(1)认知分析:学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量能够自由移动,这是学习本节内容的基础.(2)能力分析:学生已

15、经具备了一定的归纳、猜测能力,主要培养学生分析问题和处理问题的能力.(3)情感分析:职高学生的数学基础相对较差,学生对数学学习尚有一定兴趣。所以在教学中应因势利导,引导学生积极介入探究,指导学生合作互动,讨论沟通.教法学法:在教学时,主要运用问题情境教学法启发式教学法和多媒体辅助教学法.在学法上,引导学生采用以“小组合作自主探究以及练习法.三、选择媒体资源媒体资源1名称:两岸直航视频媒体格式:avr媒体资源2名称:(爱的直航)媒体格式:mp3四、教学经过一创设情境书本p39探究给学生放映两岸直航视频设计理念与意图:通过实际生活事件引入课题,提出数学问题,激发学生的兴趣,引发学生的探究欲望,为探

16、究新知作铺垫.二探求新知1.向量加法定义:求两个向量和的运算.2.求作两个向量的和向量:a(1)在平面内任取一点a;作法:(2)作ab=a,bc=b;(3)则向量ac=a+b.3.例题书本p40例2用三角形法则作共线向量的和向量.设计意图:帮助学生突破难点,即理解三角形法则.4.练习:书本p41练习1,2设计意图:让学生分组练习,进一步加深对三角形法则的理解,稳固所学知识.5.加法运算律(1)交换律:a+b=b+a(2)结合律:(a+b+c=a+(b+c)练习:书本p41页练习3设计意图:让学生运用加法交换律和结合律进行向量运算.考虑:假如平面内有n个向量依次首尾连接组成一条封闭折线,那么这n

17、个向量的和是什么?c例a三、课堂小结学生归纳总结+bc+ca=01、向量加法的三角形法则:首尾相接,首尾连.2、向量运算律:交换律和结合律.给学生放映歌曲(爱的直航)四、课后作业练习册相应练习设计意图:帮助学生及时稳固所学知识.五、教学反思这节课是向量运算的起始课,既温习了前面所学的知识,又为后面学习向量的减法及数乘运算奠定了基础,起着承上启下的作用.本节课主要引导学生探究向量加法的三角形法则和运算律,学生对不共线向量的和向量作法把握很好,但是对与共线的向量,部分学生有些糊涂,以为三角形法则要构成三角形,没有理解其本质,需关注.同时,一部分学生书写向量不知加箭头,需反复强调.【篇三:高中数学新

18、课_向量_教案_(8)】课题:平面向量的坐标运算2教学目的:1理解平面向量的坐标的概念;2把握平面向量的坐标运算;3教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学经过:一、温习引入:向量加法的三角形法则和2向量加法的交换律:+=+3向量加法的结合律:(+)+=+(+)4向量的减法向量a加上的b相反向量,叫做a与ba-b=a+(-b)5差向量的意义:=a,=b,则=a-b8向量共线定理向量b与非零向量a共线的充要条件是:有且只有一个非2(1)我们把不共线向量、叫做表示这一平面内所有向量的一组基底;(2)基底不唯

19、一,关键是不共线;(3)由定理可将任一向量在给出基底、的条件下进行分解;分别取与x轴、y轴方向一样的两个单位向量i、ja,由平面向量基本定理知,有且只要一对实数x、y,使得a=xi+yj把(x,y)叫做向量a的直角坐标,记作a=(x,y)其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,十分地,i=(1,0),j=(0,1),0=(0,011平面向量的坐标运算若a=(x1,y1),b=(x2,y2),二、讲解新课:ab(b)的充要条件是x1y2-x2y1=0a设=(x1,y1),b=(x2,y2)其中babx2,y2中至少有一个不为02充要条件不能写成y1y2x1,x2有可能为0=x1x2(

20、3)进而向量共线的充要条件有两种形式:ab(b0)?例1若向量a=(-1,x)与b=(-x,2)共线且方向一样,求x例2已知a(-1,-1),b(1,3),c(1,5),d(2,7),向量与平行吗?直线ab与平行于直线cd吗?解:=(1-(-1),3-(-1)=(2,4),cd=(2-1,7-5)=(1,2)又=(1-(-1),5-(-1)=(2,6)=(2,4)a,b,c不共线ab与cd不重合abcd四、课堂练习:a=(2,3),b=(4,-1+y),且ab,则y=a(x,-1),b(1,3),c(2,5)三点共线,则x的值为=i+2j,=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向一样且为单位向量ab与dc共线,则x、y的值可能分别为,2,2,2,4a=(4,2),b=(6,y),且ab,则ya=(1,2),b=(x,1),若a+2b与2a-b平行,则xabcd四个顶点的坐标为a(5,7),b(3,x),c(2,3),d(4,x),则x=参考答案:12五、小结向量平行的充要条件坐标表示a、b、c、d四点坐标分别为a(1,0),b(4,3),c(2,4),d(0,2),试证实:四边形abcda、b、c三点坐标分别为(-1,0)、(3,-1)、(1,2),ae=11ac,33求证:参考答案:211略)略)3七、板书设计略八、课后记:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁