《不等式证明的若干方法.doc》由会员分享,可在线阅读,更多相关《不等式证明的若干方法.doc(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、河南师范大学本科毕业论文Xxx大学本科毕业论文 学号:XXX不等式证明的若干方法学院名称: 数学与信息科学学院 专业名称: 数学与应用数学 年级班别: 姓 名: 指导教师: 200年05月2 不等式证明的若干方法摘 要无论在初等数学还是高等数学中,不等式都是十分重要的内容.而不等式的证明则是不等式知识的重要组成部分.在本文中,我总结了一些数学中证明不等式的方法.在初等数学不等式的证明中经常用到的有比较法、作商法、分析法、综合法、数学归纳法、反证法、放缩法、换元法、判别式法、函数法、几何法等等.在高等数学不等式的证明中经常利用中值定理、泰勒公式、拉格朗日函数、以及一些著名不等式,如:均值不等式、
2、柯西不等式、詹森不等式、赫尔德不等式等等.从而使不等式的证明方法更加的完善,有利于我们进一步的探讨和研究不等式的证明. 通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽象思维的能力以及养成勤于思考、善于思考的良好学习习惯.关键词 不等式;比较法;数学归纳法;函数A Lot of Methods about Inequality ProofAbstractIn elementary mathematics and higher mathematics, inequalities are very important elements. Inequality is an
3、 important component in the inequality proof. In this paper, I summarized some mathematical inequality proof methods. Inequality in elementary mathematical proof commonly use in comparative law, for commercial, analysis, synthesis, mathematical induction, the reduce- tion to absurdity, discriminant,
4、 function, Geometry, and so on. Inequality in higher mathematics proof often use the intermediate value theorem, Taylor formula, the Lagranga function and some famous inequality, such as : mean inequality, Kensen inequality, Johnson in- equality, Helder inequality, and so on. Inequality proof method
5、s get more efficient and help us further explore and study the inequality proof. Through the study of these proof methods, we can solve some practical problems, develop logical reasoning ability and demonstrated the ability to abstract thinking and grow hard thinking and good at thinking of the good
6、 study habit.Key words inequality; comparative law; mathematical induction; function 目 录摘要Abstract前言11 常用方法111比较法(作差法)1 12作商法 1 13分析法(逆推法)1 14综合法2 15反证法2 16迭合法2 17放缩法3 18数学归纳法3 19换元法3 110三角代换法4 111判别式法4112标准化法4113等式法5 114分解法6 115构造法6116排序法6117借助几何法72 利用函数证明不等式8 21函数极值法8 22单调函数法823中值定理法8 24利用拉格朗日函数93
7、 利用著名不等式1231利用均值不等式12 32利用柯西不等式13 33利用赫尔德不等式13 34利用詹森不等式13参考文献15致谢16 IV前 言在数学的学习过程中,不等式证明是一个非常重要的内容,这些内容在初等数学和高等数学中都有很好的体现.在数量关系上,虽然不等关系要比相等关系更加广泛的存在于现实的世界里,但是人们对于不等式的认识要比方程要迟的多.直到17世纪以后,不等式的理论才逐渐发展起来,成为数学基础理论的一个重要组成部分.在研究数学的不等式过程中,有许多的内容都十分的有用,如:不等式的性质、不等式的证明方法和不等式的解法. 在本文中,我们就不一一说明了,而主要的介绍一些证明不等式的
8、常用方法、利用函数证明不等式的方法和利用一些著名不等式证明不等式的方法.希望通过这些方法的学习,我们可以很好的认识数学的一些特点.从而开拓一下我们的数学视野,深化一下我们对不等式证明方法的认识,以便于可以站在更高的角度来研究数学不等式.1 常用方法1.1比较法(作差法)1在比较两个实数和的大小时,可借助的符号来判断.步骤一般为:作差变形判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.例1 已知:,求证:.证明 ,故得 .1.2作商法在证题时,一般在,均为正数时,借助或来判断其大小,步骤一般为:作商变形判断(大于1或小于1).例2 设,求证:.证
9、明 因为 ,所以 ,.而 ,故 .1.3分析法(逆推法)从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.例3 求证:.证明 要证,即证,即,.由此逆推即得 .1.4综合法2证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法.例4 已知:,同号,求证:.证明 因为,同号,所以 ,则 即 .1.5反证法3先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的.例5 已知,是大于1的整数,求证:.证明 假设 ,则 ,
10、即 ,故 ,这与已知矛盾,所以.1.6迭合法4把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证. 例6 已知:,求证: .证明 因为,所以 ,.由柯西不等式所以原不等式获证.1.7放缩法5在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的.值得注意的是“放”、“缩”得当,不要过头.常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法.例7 求证:
11、.证明 令则所以 .1.8数学归纳法6对于含有的不等式,当取第一个值时不等式成立,如果使不等式在时成立的假设下,还能证明不等式在时也成立,那么肯定这个不等式对取第一个值以后的自然数都能成立.例8 已知:,求证:.证明 (1)当时,不等式成立;(2)若时,成立,则=,即成立.根据(1)、(2),对于大于1的自然数都成立.1.9换元法在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化.例9 已知:,求证:.证明 设,则, 所以 .1.10三角代换法借助三角变换,在证题中可使某些问题变易.例10 已知:,求证:.证明 设,则;设,则所以 . 1.11判别式法7通过构造一元二次
12、方程,利用关于某一变元的二次三项式有实根时判别式的取值范围,来证明所要证明的不等式.例11 设,且,求证:.证明 设,则代入中得 ,即 因为,所以, 即 ,解得 ,故.1.12标准化法8形如的函数,其中,且为常数,则当的值之间越接近时,的值越大(或不变);当时,取最大值,即.标准化定理:当为常数时,有.证明:记,则, 求导得 ,由得 ,即.又由 ,知的极大值点必在时取得.由于当时,故得不等式.同理,可推广到关于个变元的情形.例12 设为三角形的三内角,求证:.证明 由标准化定理得,当时, , 取最大值,故 .1.13等式法应用一些等式的结论,可以巧妙地给出一些难以证明的不等式的证明.例13(1
13、956年波兰数学竞赛题)、为的三边长,求证:.证明 由海伦公式,其中.两边平方,移项整理得而,所以 . 1.14分解法按照一定的法则,把一个数或式分解为几个数或式,使复杂问题转化为简单易解的基本问题,以便分而治之,各个击破,从而达到证明不等式的目的.例14 ,且,求证:.证明 因为 .所以 .1.15构造法9-10在证明不等式时,有时通过构造某种模型、函数、恒等式、复数等,可以达到简捷、明快、以巧取胜的目的.例15 已知:,求证:.证明 依题设,构造复数,则,所以 故 .1.16排序法11利用排序不等式来证明某些不等式.排序不等式:设,则有其中是的一个排列.当且仅当或时取等号.简记作:反序和乱
14、序和同序和.例16 求证:.证明 因为有序,所以根据排序不等式同序和最大,即 .1.17借助几何法12借助几何图形,运用几何或三角知识可使某些证明变易.例17 已知:,且,求证:.证明 (如图1.17.1)以为斜边,为直角边作.延长AB至D,使,延长AC至E,使,过C作AD的平行线交DE于F,则,令,所以 又,即,所以 . 图1.17.12 利用函数证明不等式2.1函数极值法通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的.例18 设,求证:.证明 当时, 当时, 故 .2.2单调函数法13-14当属于某区间,有,则单调上升;若,则单调下降.推广之,若证,只须证及即可.例 19 证
15、明不等式 ,证明 设则故当时,严格递增;当严格递减.又因为f在处连续,则当时, 从而证得 2.3中值定理法利用中值定理:是在区间上有定义的连续函数,且可导,则存在,满足来证明某些不等式,达到简便的目的.例20 求证:.证明 设 ,则故 .2.4利用拉格朗日函数例 21 证明不等式 其中为任意正实数.证明 设拉格朗日函数为对 对L求偏导数并令它们都等于0,则有,由方程组的前三式,易的把它代入第四式,求出从而函数L的稳定点为为了判断是否为所求条件极小值,我们可把条件看作隐函数(满足隐函数定理条件),并把目标函数看作与的复合函数.这样,就可应用极值充分条件来做出判断.为此计算如下:当时,由此可见,所
16、求得的稳定点为极小值点,而且可以验证是最小值点.这样就有不等式令则代入不等式有或 3 利用著名不等式证明3.1利用均值不等式15-16 设是n个正实数,则,当且仅当时取等号.例22 证明柯西不等式 证明 要证柯西不等式成立,只要证 (1)令 (2) 式中则(1)即 即 (3)下面证不等式(3),有均值不等式,即 ,同理 , ,.将以上各式相加,得 (4)根据(2),(4)式即 .因此不等式(3)成立,于是柯西不等式得证.3.2利用柯西不等式17-18例23 设,求证:证明 由柯西不等式两边除以即得说明:两边乘以后开方得当为正数时为均值不等式中的算术平均不大于平方平均3.3利用赫尔德不等式19例
17、24 设为正常数,求证: 证明 = = 即 3.4利用詹森不等式20例 25 证明不等式 其中均为正数.证明 设 由的一阶和二阶导数可见,在时为严格凸函数.依詹森不等式有从而即又因所以 参考文献1李长明,周焕山.初等数学研究M.北京:高等教育出版社,1995,253-263.2叶慧萍.反思性教学设计-不等式证明综合法J.数学教学研究,2005,10(3):89-91.3胡炳生,吴俊.现代数学观点下的中学数学M.北京:高等教育出版社,1998,45-50.4宋庆.一个分式不等式的再推广J.中等数学,2006,45(5):29-31.5蒋昌林.也谈一类分式不等式的统一证明J.数学通报,2005,1
18、5(2):75-79. 6匡继昌.常用不等式M.济南:山东科技出版社,2004,23-34.7张新全.两个不等式的证明J.数学通报,2006,45(4):54-55.8Priestley M B ,Chao M T.Nonparameteric function fittingJ.J R Statist.Soc.(Series B),1972,34:385-392.9李铁烽.构造向量证三元分式不等式J.数学通报,2004,(2):101-102.10Benedetti J K. On the Nonparametric estimation of regression functionsJ.J
19、 R Statist.Soc(Series B).1977,39(1):248-253.11 Hardy, litlewood , bolya G.InequalitiesM. Cambridge :Cambridge university press,1997,45 .12胡如松.垂足三角形的几个有趣性质及其猜想J.福建中学数学,2004,(5):23-25.13马雪雅.加权几何平均不等式J.数学杂志,2006,26(3):319-322.14数学分析.华东师范大学数学系(第三版)M.北京:高等教育出版社,1999,87. 15施咸亮.与几何平均有关的两个不等式J.浙江师范大学学报,1980
20、,1(1):21-25.16李家熠.用均值不等式证明不等式J.数学教学通讯,2005,11(4):130-133.17霍连林.著名不等式M.北京:中国物质出版社,1994,123-124.18 Tom M. Apostol. Mathematical Analysis (Second Edition)M .BeiJing: China Machine Press,1994,17-19. 19Yang Bicheng. On an Extension of Hardy-Hilberts Inequality J.Chinese Ann. Math.(Ser. A ),2002,23(2):247
21、-254.20Gao Mingzhe.On Heisenbergs InequalityJ.J.Mth.Anal.Appl.,1999,234(2):727-734.致 谢在论文的准备和写作过程中,笔者得到了XX老师的悉心指导和热情帮助,特别是他敏锐的学术眼光和严谨的治学态度使我受益颇深.同时,我也要感谢我的其他老师和同学们,是他们给予我的帮助让我走过大学的风风雨雨,在那些最艰苦的日子里是他们激励我、鼓励我,让我奋发图强.我也将以更多的努力来回报他们,我相信我会做得更好! XXX200X年5月于XXX大学明:一、论文的内容及顺序(一)中文论文的内容及顺序为:1、论文封面2、中文摘要3、英文摘要
22、4、论文主体部分5、参考文献6、致谢(中文论文的致谢)7、附录其中1不编页码,2-7用阿拉伯数字编排页码。二、除封面外每页都要有页眉,页眉在每一页的最上方,页眉内容为“河南师范大学本科毕业论文(设计)”。用小五号宋体,居中排列,论文、设计二选一。河南师范大学本科毕业论文 学号: XXXXXXXX(四号黑体)Sn(IV)掺杂纳米TiO2/AC降解橙黄G的动力学与机理研究(20磅字号,华文中宋,加粗,居中)学院名称: 化学与环境科学学院 专业名称: XXXX 年级班别: XXXX级XXXXX 姓 名: XXX 指导教师: XXX (黑体,小三,居中,上面横线上内容要居中)XXXX年XX月河南师范大
23、学本科毕业论文(设计)(小五,宋体,居中,论文、设计二选一)Sn(IV)掺杂纳米TiO2/AC降解橙黄G的动力学与机理研究(黑体小三,1.5倍行距,居中)摘 要(黑体,小四,1.5倍行距) 采用溶胶凝胶法制备了掺杂Sn(IV)的TiO2/AC光催化剂,以生物染料橙黄G为目标降解物,研究了多相光催化降解橙黄G的动力学规律(300字左右)(宋体,小四,1.5倍行距)关键词(黑体,小四,1.5倍行距) Sn(IV)+ TiO2/AC;橙黄G;动力学;(3-6个)(宋体,小四,1.5倍行距)Research on the Degrdation Kinetics and Mechanism of OG
24、over Sn(IV) Doped TiO2/AC(Times New Roman,小三号,单倍行距,加黑,首字母大写)Abstract(Times New Roman,小四号,1.5倍行距,加黑) Sn(IV) doped TiO2/AC photocatalyst was prepared by Sol-gel method. The different initial concentration of OG were used to study the degration kinetics of Orange G. The results showed that, the kinetic
25、s of this reaction was in accordance with Langmuir-Hinshelwood equation(Times New Roman,小四号,1.5倍行距)Keywords(Times New Roman,小四号,1.5倍行距,加黑) Sn(IV)+ TiO2/AC;Orange G;kinetics;(Times New Roman,小四号,1.5倍行距)前 言(黑体,小三,1.5倍行距,居中)染料废水的处理是大家颇为关注的课题之一,而偶氮染料是染料中品种最多的一类,约占染料总量的50%以上。染料废水色度高,有机污染物浓度大且具有无毒、反应速度快、降
26、解效率高、无二次污染等优点,是近年来环境污染治理技术的研究热点1(引用参考文献需以上标1形式标注出来,并在文后将此参考文献列出来)。(宋体,小四,1.5倍行距)1 实验部分(黑体,小三,1.5倍行距,顶格)1.1 试剂与仪器(二级标题,黑体,小四,1.5倍行距,顶格)主要仪器:光催化反应仪(自制);300W高压汞灯(上海亚明灯泡厂有限公司);磁力搅拌器(宋体,小四,1.5倍行距)如文中出现表格或插图,参考下面格式。表1.1 题目*(宋体5号,单倍行距,居中)表格标题(黑体5号,单倍行距)表格内容(宋体5号,单倍行距)注:1、表格最好采用三线表格。2、全文的表格统一编序,也可以逐章编序,不管采用
27、哪种方式,表序必须连续。(宋体5号,单倍行距)此外,表格应写在离正文首次出现处的近处,不应过分超前或拖后。1.2 反应装置采用自制流化床光催化反应仪(如图1.1),1.加料口,排气口 9.石英冷肼2.进水口 10.反应瓶3.进气口 11.储水瓶4.放空口 12.蠕动泵5.曝气板 13.液体流量计6.出水口 14.气体流量计7.冷凝水进出口 15.气体缓冲瓶8.高压汞灯 16.空压机图1.1 流化床光催化反应仪(宋体5号,居中)注:毕业设计(论文)的插图必须精心制作,线条要匀称,图面要整洁美观,插图应与正文呼应,不得与正文脱节。全文插图可以统一编序,也可以逐章单独编序,不管采用哪种方式,图序必须
28、连续,不得重复或跳缺。由若干分图组成的插图,分图用a,b,c标序。图中各种代号的意义,以图注形式写在图题下方,或写在图的一侧。图应在描纸或洁白纸上用墨线绘成,或用计算机绘图,电气图或机械图应符合相应的国家标准的要求。2 实验结果(黑体,小三,1.5倍行距,顶格)2.1 橙黄G溶液的动力学研究(二级标题,黑体,小四,1.5倍行距,顶格)在实验过程中,探索得到实验最佳反应条件为pH2.00, Sn(IV) (2.5at.%), 催化剂10g/l, H2O2=1.5ml/l,固定最佳反应条件,配制初始浓度分别为10mg/l、20 mg/l、30 mg/l、40 mg/l、50 mg/l、60 mg/
29、l的溶液加入到反应体系中,以考察橙黄G光催化降解的动力学。可以求得k、KA(见表2.1)。表观反应速率常数k远大于表面吸附平衡常数KA,这说明在该光催化氧化过程中,虽然参加反应的橙黄G要经过扩散、吸附、表面反应等步骤,但是吸附为该反应的速控步。(宋体,小四,1.5倍行距)表2.1 不同起始浓度的橙黄G溶液光催化作用下的参数催化剂橙黄G起始浓度C0(mg/l)反应速率常数k1(min-1)初始反应速r0(mg/lmin)去除率Sn(IV)TiO2/AC9.80.032190.7287.720.60.036881.391310.046711.994.242.70.05862.9296.452.50
30、.07223.5398.1650.053123.7595.6参考文献(黑体,小三,1.5倍行距,居中)1 姓在前名在后,姓在前名在后,姓在前名在后 et al. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parametersJ. Journal of Photochemistry and Photobiology A: Chemistry,2003,157(1): 111-116.2 黄惠利,黄妙良,蔡阿娜等二氧化钛光催化降解处理染
31、料废水J化工环保,2002,22(2):84-873 国家环保局水和废水监测分析方法编委会主编,水和废水监测分析方法(第三版)M北京:中国环境科学出版社,1989(宋体,五号,单倍行距,顶格,参考文献需10篇以上)毕业论文(设计)注释与参考文献分列。建议注释采用页下脚注,分页编码。参考文献列于文章末尾,连续编号。注释和参考文献以必要为原则,其中“注释”视学科具体情况安排。要求注释或参考文献与文内编号一一对应。(1)正文引用参考文献处应以方括号标注出,如“效率可提高2514。”表示此结果援引自文献14。参考文献在文中编号要求:只有文献第一次在文中出现时才编序号,换句话说,一篇文献只有一个序号,即
32、使某文献在文中被多次引用,但在几个引用处都要标注同一个序号。如果在正文的一处引用了多篇文献,标注时只用一个方括号,括号内列写这几篇文献的序号:若几个序号是连续的,只标注起、止序号,两序号之间加半字线“-”号;若几个序号不连续,各序号之间加逗号。参考文献体例格式如下:期刊文章1作者论文题目J期刊名称,年,卷(期):起止页码 专著、论文集、学位论文、报告 2编者或作者书名或论文、报告名文献类型标识出版地:出版社,出版年,起止页码专利 3专利所有者专利题名P专利国别:专利号,出版日期 电子文献 4主要责任者电子文献题名电子文献的出处或可获得地址,发表或更新日期/引用日期(任选) (2)如果解释某些内
33、容,或者引文来自经典著作、领导讲话、文件法规、内部资料、工具辞书,以及转引自有关文章,均可做为注释(说明作者、题名和出处),如“和谐社会。”,要以圈码标识上标表示。 (3)说明:文献类型标识方法为:专著M,论文集C,报纸文章N,期刊文章J,学位论文D, 报告R,标准S,专利P。对于不同文献的作者、编者、所有者或责任者(为方便描述,均以作者代替),三个及以下作者的,要把作者名字全部写出来,且作者与作者之间用“,”分开;三个以上作者的,要在第三个作者后加“等”。对于英文文献,三个及以下作者的,与注要求一样;三个以上作者的,要在第三个作者后加“et al”。致 谢(黑体,小三,1.5倍行距,居中)在论文的准备和写作过程中,笔者得到了XXX老师的悉心指导和热情帮助。(宋体,小四,1.5倍行距) XXXXXXX年XX月于xxx大学