《252用列举法求概率(一).ppt》由会员分享,可在线阅读,更多相关《252用列举法求概率(一).ppt(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、25.2用列举法求概率(一)二、自学检测:二、自学检测: 3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率. (1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色. 解:(1) ;(2) ;(3) .414321回答下列问题,并说明理由回答下列问题,并说明理由(1)掷一枚硬币,正面向上的概率是)掷一枚硬币,正面向上的概率是_;(2)袋子中装有)袋子中装有 5 个红球,个红球,3 个绿球,这些球除了个绿球,这些球除了颜色外
2、都相同,从袋子中随机摸出一个球,它是红色的颜色外都相同,从袋子中随机摸出一个球,它是红色的概率为概率为_;(3)掷一个骰子,观察向上一面的点数,点数大)掷一个骰子,观察向上一面的点数,点数大于于 4 的概率为的概率为_1复习旧知复习旧知在一次试验中,如果可能出现的结果只有有限个,在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫的概率,这种求概率的方法叫列举法列举法 例例1同时向空中抛掷两枚质地均匀的硬币,求
3、下同时向空中抛掷两枚质地均匀的硬币,求下列事件的概率:列事件的概率:(1)两枚硬币全部正面向上;)两枚硬币全部正面向上; (2)两枚硬币全部反面向上;)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上)一枚硬币正面向上、一枚硬币反面向上2探究新知探究新知方法一:将两枚硬币分别记做方法一:将两枚硬币分别记做 A、B,于是可以直,于是可以直接列举得到:(接列举得到:(A正,正,B正),(正),(A正,正,B反),反), (A反,反,B正),正), (A反,反,B反)四种等可能的结果故:反)四种等可能的结果故:2探究新知探究新知P(两枚正面向上)(两枚正面向上)=41P(两枚反面向上)
4、(两枚反面向上)=41P(一枚正面向上,一枚反面向上)(一枚正面向上,一枚反面向上)=21方法二:将同时掷两枚硬币,想象为先掷一枚,再方法二:将同时掷两枚硬币,想象为先掷一枚,再掷一枚,掷一枚,分步分步思考:在第一枚为正面的情况下第二枚硬思考:在第一枚为正面的情况下第二枚硬币有正、反两种情况,同理第一枚为反面的情况下第二币有正、反两种情况,同理第一枚为反面的情况下第二枚硬币有正、反两种情况枚硬币有正、反两种情况2探究新知探究新知两枚硬币分别记为第两枚硬币分别记为第 1 枚和第枚和第 2 枚,可以用下表列枚,可以用下表列举出所有可能出现的结果举出所有可能出现的结果 正正反反正正(正,正)(正,正
5、)(反,正)(反,正)反反(正,反)(正,反)(反,反)(反,反)第第 1 枚枚第第 2 枚枚 由此表可以看出,同时抛掷两枚硬币,可能出现的由此表可以看出,同时抛掷两枚硬币,可能出现的结果有结果有 4 个,并且它们出现的可能性相等个,并且它们出现的可能性相等2探究新知探究新知列表法列表法 例例2同时掷两枚质地均匀的骰子,同时掷两枚质地均匀的骰子,计算下列事件计算下列事件的概率:的概率:(1)两枚骰子的点数相同;)两枚骰子的点数相同;(2)两枚骰子点数的和是)两枚骰子点数的和是 9;(3)至少有一枚骰子的点数为)至少有一枚骰子的点数为 23运用新知运用新知解:两枚骰子分别记为第解:两枚骰子分别记
6、为第 1 枚和第枚和第 2 枚,可以用下枚,可以用下表列举出所有可能的结果表列举出所有可能的结果1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第第1枚枚第第2枚枚可以看出,同时掷两枚骰子,可能出现的结果有可以看出,同时掷两枚骰子,可能出现的结果有 36种,并且它
7、们出现的可能性相等种,并且它们出现的可能性相等3运用新知运用新知1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第第1枚枚第第2枚枚3运用新知运用新知(1)两枚骰子点数相同(记为事件)两枚骰子点数相同(记为事件 A)的结果有)的结果有 6种,所以,种,所以,P(A
8、)= =36661234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第第1枚枚第第2枚枚3运用新知运用新知(2)两枚骰子点数之和是)两枚骰子点数之和是 9(记为事件(记为事件 B)的结果)的结果有有 4 种,所以,种,所以, P(B)= =364911234561(1
9、,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第第1枚枚第第2枚枚3运用新知运用新知(3)至少有一枚骰子的点数是)至少有一枚骰子的点数是 2(记为事件(记为事件 C)的)的结果有结果有 11 种,所以,种,所以, P(C)= 3611探究新知探究新知 上题改为一个骰子,骰子,一次
10、投一个,投两次,情况如何1.练习练习一个不透明的布袋子里装有一个不透明的布袋子里装有 4 个大小、质个大小、质地均相同的乒乓球,球面上分别标有地均相同的乒乓球,球面上分别标有 1,2,3,4小林小林和小华按照以下方式抽取乒乓球:先从布袋中随机抽取和小华按照以下方式抽取乒乓球:先从布袋中随机抽取一个乒乓球,记下标号后放回袋内搅匀,再从布袋内随一个乒乓球,记下标号后放回袋内搅匀,再从布袋内随机抽取第二个乒乓球,记下标号,求出两次取的小球的机抽取第二个乒乓球,记下标号,求出两次取的小球的标号之和若标号之和为标号之和若标号之和为 4,小林赢;若标号之和为,小林赢;若标号之和为 5,小华赢请判断这个游戏是否公平,并说明理由小华赢请判断这个游戏是否公平,并说明理由4巩固新知巩固新知2.教科书教科书 138 页页练习练习 当一次实验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.