《二次函数的abc判定(共25页).doc》由会员分享,可在线阅读,更多相关《二次函数的abc判定(共25页).doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上3. (2014山东威海,第11题3分)已知二次函数y=ax2+bx+c(a0)的图象如图,则下列说法:c=0;该抛物线的对称轴是直线x=1;当x=1时,y=2a;am2+bm+a0(m1)其中正确的个数是( )A1B2C3D4考点:二次函数图象与系数的关系分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断解答:解:抛物线与y轴交于原点,c=0,故正确;该抛物线的对称轴是:,直线x=1,故正确;当x=1时,y=2a+b+c,对称轴是直线x=1,b=2a,又c=0,y=4a,故错误;x=m对应的函数值为y=a
2、m2+bm+c,b=2a,am2+bm+a0(m1)故正确故选:C点评:本题考查了二次函数图象与系数的关系二次函数y=ax2+bx+c(a0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定5. (2014山东烟台,第11题3分)二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c3b;8a+7b+2c0;当x1时,y的值随x值的增大而增大其中正确的结论有()A1个B2个C3个D4个考点:二次函数的图象与性质解答:根据抛物线的对称轴为直线x=2,则有4a+b=0;观察函数图象得到当x=3时,函
3、数值小于0,则9a3b+c0,即9a+c3b;由于x=1时,y=0,则ab+c=0,易得c=5a,所以8a+7b+2c=8a28a10a=30a,再根据抛物线开口向下得a0,于是有8a+7b+2c0;由于对称轴为直线x=2,根据二次函数的性质得到当x2时,y随x的增大而减小解答:抛物线的对称轴为直线x=2,b=4a,即4a+b=0,所以正确;当x=3时,y0,9a3b+c0,即9a+c3b,所以错误;抛物线与x轴的一个交点为(1,0),ab+c=0,而b=4a,a+4a+c=0,即c=5a,8a+7b+2c=8a28a10a=30a,抛物线开口向下,a0,8a+7b+2c0,所以正确;对称轴为
4、直线x=2,当1x2时,y的值随x值的增大而增大,当x2时,y随x的增大而减小,所以错误故选B点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线
5、与x轴没有交点7. (2014山东聊城,第12题,3分)如图是二次函数y=ax2+bx+c(a0)图象的一部分,x=1是对称轴,有下列判断:b2a=0;4a2b+c0;ab+c=9a;若(3,y1),(,y2)是抛物线上两点,则y1y2,其中正确的是()ABCD考点:二次函数图象与系数的关系分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断解答:解:抛物线的对称轴是直线x=1,=1,b=2a,b2a=0,正确;抛物线的对称轴是直线x=1,和x轴的一个交点是(2,0),抛物线和x轴的另一个交点是(4,0),把x=2代入得:y=4a2b+c0,错误;图象过点(2,0),代入抛
6、物线的解析式得:4a+2b+c=0,又b=2a,c=4a2b=8a,ab+c=a2a8a=9a,正确;抛物线和x轴的交点坐标是(2,0)和(4,0),抛物线的对称轴是直线x=1,点(3,y1)关于对称轴的对称点的坐标是(1,y1),(,y2),1,y1y2,正确;即正确的有,故选B点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的9. (2014年贵州黔东南9(4分))如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,下列4个结论:abc0;ba+c;4a+2b+c0
7、;b24ac0其中正确结论的有()ABCD考点:二次函数图象与系数的关系分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断解答:解:由二次函数的图象开口向上可得a0,根据二次函数的图象与y轴交于正半轴知:c0,由对称轴直线x=2,可得出b与a异号,即b0,则abc0,故正确;把x=1代入y=ax2+bx+c得:y=ab+c,由函数图象可以看出当x=1时,二次函数的值为正,即a+b+c0,则ba+c,故选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数
8、图象可以看出当x=2时,二次函数的值为负,即4a+2b+c0,故选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b24ac0,故D选项正确;故选B点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值16(2014四川南充,第10题,3分)二次函数y=ax2+bx+c(a0)图象如图,下列结论:abc0;2a+b=0;当m1时,a+bam2+bm;ab+c0;若ax12+bx1=ax22+bx2,且x1x2,x1+x2=2其中正
9、确的有()ABCD分析:根据抛物线开口方向得a0,由抛物线对称轴为直线x=1,得到b=2a0,即2a+b=0,由抛物线与y轴的交点位置得到c0,所以abc0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m1时,a+b+cam2+bm+c,即a+bam2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(1,0)的右侧,则当x=1时,y0,所以ab+c0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1x2)a(x1+x2)+b=0,而x1x2,则a(x1+x2)+b=0,即x1+x2=,然后把b=2a代入计算得到x1+x2=2解:抛物线开口向下,a0,抛物
10、线对称轴为性质x=1,b=2a0,即2a+b=0,所以正确;抛物线与y轴的交点在x轴上方,c0,abc0,所以错误;抛物线对称轴为性质x=1,函数的最大值为a+b+c,当m1时,a+b+cam2+bm+c,即a+bam2+bm,所以正确;抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,抛物线与x轴的另一个交点在(1,0)的右侧当x=1时,y0,ab+c0,所以错误;ax12+bx1=ax22+bx2,ax12+bx1ax22bx2=0,a(x1+x2)(x1x2)+b(x1x2)=0,(x1x2)a(x1+x2)+b=0,而x1x2,a(x1+x2)+b=0,即x1+x2=,b
11、=2a,x1+x2=2,所以正确故选D点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点11(2014莱芜,第12题3分)已知二次
12、函数y=ax2+bx+c的图象如图所示下列结论:abc0;2ab0;4a2b+c0;(a+c)2b2其中正确的个数有()A1B2C3D4考点:二次函数图象与系数的关系专题:数形结合分析:由抛物线开口方向得a0,由抛物线对称轴在y轴的左侧得a、b同号,即b0,由抛物线与y轴的交点在x轴上方得c0,所以abc0;根据抛物线对称轴的位置得到10,则根据不等式性质即可得到2ab0;由于x=2时,对应的函数值小于0,则4a2b+c0;同样当x=1时,ab+c0,x=1时,a+b+c0,则(ab+c)(a+b+c)0,利用平方差公式展开得到(a+c)2b20,即(a+c)2b2解答:解:抛物线开口向下,a
13、0,抛物线的对称轴在y轴的左侧,x=0,b0,抛物线与y轴的交点在x轴上方,c0,abc0,所以正确;10,2ab0,所以正确;当x=2时,y0,4a2b+c0,所以正确;当x=1时,y0,ab+c0,当x=1时,y0,a+b+c0,(ab+c)(a+b+c)0,即(a+cb)(a+c+b)0,(a+c)2b20,所以正确故选D点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向上;对称轴为直线x=;抛物线与y轴的交点坐标为(0,c);当b24ac0,抛物线与x轴有两个交点;当b24ac=0,抛物线与x轴有一个交点;当b24ac0
14、,抛物线与x轴没有交点3(2014年四川资阳,第10题3分)二次函数y=ax2+bx+c(a0)的图象如图,给出下列四个结论:4acb20;4a+c2b;3b+2c0;m(am+b)+ba(m1),其中正确结论的个数是()A4个B3个C2个D1个考点:二次函数图象与系数的关系分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断解答:解:抛物线和x轴有两个交点,b24ac0,4acb20,正确;对称轴是直线x1,和x轴的一个交点在点(0,0)和点(1,0)之间,抛物线和x轴的另一个交点在(3,0)和(2,0)之间,把(2,0)代入抛物线得:y=4a2b+c0,4a+c2b,错
15、误;把(1,0)代入抛物线得:y=a+b+c0,2a+2b+2c0,b=2a,3b,2c0,正确;抛物线的对称轴是直线x=1,y=ab+c的值最大,即把(m,0)(m0)代入得:y=am2+bm+cab+c,am2+bm+ba,即m(am+b)+ba,正确;即正确的有3个,故选B点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法同时注意特殊点的运用4(2014年天津市,第12 题3分)已知二次函数y=ax2+bx+c(a0)的图象如图,且关于x的一元二次方程ax2+bx+
16、cm=0没有实数根,有下列结论:b24ac0;abc0;m2其中,正确结论的个数是()A 0B1C2D3考点:二次函数图象与系数的关系分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断;先根据抛物线的开口向下可知a0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断;一元二次方程ax2+bx+cm=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断即可解答:解:二次函数y=ax2+bx+c与x轴有两个交点,b24ac0,故正确;抛物线的开口向下,a0
17、,抛物线与y轴交于正半轴,c0,对称轴x=0,ab0,a0,b0,abc0,故正确;一元二次方程ax2+bx+cm=0没有实数根,y=ax2+bx+c和y=m没有交点,由图可得,m2,故正确故选D点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用8.(2014孝感,第12题3分)抛物线y=ax2+bx+c的顶点为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如图,则以下结论:b24ac0;a+b+c0;ca=2;方程ax2+bx+c2=0有两个相等的实数根其中正确结论的个数为()A1
18、个B2个C3个D4个考点:二次函数图象与系数的关系;抛物线与x轴的交点专题:数形结合分析:由抛物线与x轴有两个交点得到b24ac0;有抛物线顶点坐标得到抛物线的对称轴为直线x=1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y0,则a+b+c0;由抛物线的顶点为D(1,2)得ab+c=2,由抛物线的对称轴为直线x=1得b=2a,所以ca=2;根据二次函数的最大值问题,当x=1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,所以说方程ax2+bx+c2=0有两个相等的实数根解答:解:抛物线与x轴有两个交点,b24ac0,所以错误;
19、顶点为D(1,2),抛物线的对称轴为直线x=1,抛物线与x轴的一个交点A在点(3,0)和(2,0)之间,抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,当x=1时,y0,a+b+c0,所以正确;抛物线的顶点为D(1,2),ab+c=2,抛物线的对称轴为直线x=1,b=2a,a2a+c=2,即ca=2,所以正确;当x=1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,方程ax2+bx+c2=0有两个相等的实数根,所以正确故选C点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向上;对称轴为直线x=;抛物线与y
20、轴的交点坐标为(0,c);当b24ac0,抛物线与x轴有两个交点;当b24ac=0,抛物线与x轴有一个交点;当b24ac0,抛物线与x轴没有交点12.(2014菏泽第8题3分)如图,RtABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )A BC D考点:动点问题的函数图象专题:数形结合分析:分类讨论:当0x1时,根据正方形的面积公式得到y=x2;当1x2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面
21、积得到y=x22(x1)2,配方得到y=(x2)2+2,然后根据二次函数的性质对各选项进行判断解答:解:当0x1时,y=x2,当1x2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2x,RtABC中,AC=BC=2,ADM为等腰直角三角形,DM=2x,EM=x(2x)=2x2,SENM=(2x2)2=2(x1)2,y=x22(x1)2=x2+4x2=(x2)2+2,y=,故选A15.(2014年山东泰安,第20题3分)二次函数y=ax2+bx+c(a,b,c为常数,且a0)中的x与y的部分对应值如下表:X1013y1353下列结论:(1)ac0;(2)当x1时,y的值随x值的增大
22、而减小(3)3是方程ax2+(b1)x+c=0的一个根;(4)当1x3时,ax2+(b1)x+c0其中正确的个数为()A4个B3个C2个D1个分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解解:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a0;又x=0时,y=3,所以c=30,所以ac0,故(1)正确;二次函数y=ax2+bx+c开口向下,且对称轴为x=1.5,当x1.5时,y的值随x值的增大而减小,故(2)错误;x=3时,y=3,9a+3b+c=3,c=3,9a+3b+3=3,9a+3b=0,3是
23、方程ax2+(b1)x+c=0的一个根,故(3)正确;x=1时,ax2+bx+c=1,x=1时,ax2+(b1)x+c=0,x=3时,ax2+(b1)x+c=0,且函数有最大值,当1x3时,ax2=(b1)x+c0,故(4)正确故选B点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度熟练掌握二次函数图象的性质是解题的关键5. (2014贵港,第12题3分)已知二次函数y=ax2+bx+c(a0)的图象如图,分析下列四个结论:abc0;b24ac0;3a+c0;(a+c)2b2,其中正确的结论有()A1个B2个C3个D4个考点:二次函数图象
24、与系数的关系分析:由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;由抛物线与x轴有两个交点判断即可;f(2)+2f(1)=6a+3c0,即2a+c0;又因为a0,所以3a+c0故错误;将x=1代入抛物线解析式得到a+b+c0,再将x=1代入抛物线解析式得到ab+c0,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到(a+c)2b2,解答:解:由开口向下,可得a0,又由抛物线与y轴交于正半轴,可得c0,然后由对称轴在y轴左侧,得到b与a同号,则可得b0,abc0,故错误;由抛物线与x轴有两个交点,可得b24ac0,故正确;当x
25、=2时,y0,即4a2b+c0 (1)当x=1时,y0,即a+b+c0 (2)(1)+(2)2得:6a+3c0,即2a+c0又a0,a+(2a+c)=3a+c0故错误;x=1时,y=a+b+c0,x=1时,y=ab+c0,(a+b+c)(ab+c)0,即(a+c)+b(a+c)b=(a+c)2b20,(a+c)2b2,故正确综上所述,正确的结论有2个故选:B点评:本题考查了二次函数图象与系数的关系二次函数y=ax2+bx+c(a0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定11.(2014广东深圳,第11题3分)二次函数y=ax2+bx+c图象如图,下列正确
26、的个数为()bc0;2a3c0;2a+b0;ax2+bx+c=0有两个解x1,x2,x10,x20;a+b+c0;当x1时,y随x增大而减小A2B3C4D5考点:二次函数图象与系数的关系分析:根据抛物线开口向上可得a0,结合对称轴在y轴右侧得出b0,根据抛物线与y轴的交点在负半轴可得c0,再根据有理数乘法法则判断;再由不等式的性质判断;根据对称轴为直线x=1判断;根据图象与x轴的两个交点分别在原点的左右两侧判断;由x=1时,y0判断;根据二次函数的增减性判断解答:解:抛物线开口向上,a0,对称轴在y轴右侧,a,b异号即b0,抛物线与y轴的交点在负半轴,c0,bc0,故正确;a0,c0,2a3c
27、0,故错误;对称轴x=1,a0,b2a,2a+b0,故正确;由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1x2时,x10,x20,故正确;由图形可知x=1时,y=a+b+c0,故错误;a0,对称轴x=1,当x1时,y随x增大而增大,故错误综上所述,正确的结论是,共3个故选B点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换14(2014齐齐哈尔,9题3分)如图,二次函y=ax2+bx+c(a0)图象的一部分,对称轴为直线x=,且经过点(2,
28、0),下列说法:abc0;a+b=0;4a+2b+c0;若(2,y1),(,y2)是抛物线上的两点,则y1y2,其中说法正确的是()ABCD考点:二次函数图象与系数的关系分析:根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;根据对称轴求出b=a;把x=2代入函数关系式,结合图象判定符号;求出点(2,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小解答:解:二次函数的图象开口向下,a0,二次函数的图象交y轴的正半轴于一点,c0,对称轴是直线x=,=,b=a0,abc0故正确;b=aa+b=0故正确;把x=2代入y=ax2+bx+c得:y=4a+2b+
29、c,抛物线经过点(2,0),当x=2时,y=0,即4a+2b+c=0故错误;(2,y1)关于直线x=的对称点的坐标是(3,y1),又当x时,y随x的增大而减小,3,y1y2故错误;综上所述,正确的结论是故选:A点评:本题考查了二次函数的图象和系数的关系的应用,注意:当a0时,二次函数的图象开口向上,当a0时,二次函数的图象开口向下6. (2014扬州,第16题,3分)如图,抛物线y=ax2+bx+c(a0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a2b+c的值为0(第3题图)考点:抛物线与x轴的交点分析:依据抛物线的对称性求得与x轴的另一个交点,代入解析式
30、即可解答:解:设抛物线与x轴的另一个交点是Q,抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),与x轴的另一个交点Q(2,0),把(2,0)代入解析式得:0=4a2b+c,4a2b+c=0,故答案为:0点评:本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键2(2014四川省德阳,第24题14分)如图,已知抛物线经过点A(2,0)、B(4,0)、C(0,8)(1)求抛物线的解析式及其顶点D的坐标;(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=EF,请
31、求出点P的坐标;(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度考点:二次函数综合题;解一元二次方程-因式分解法;根的判别式;待定系数法求一次函数解析式;待定系数法求二次函数解析式专题:综合题分析:(1)由于抛物线与x轴的两个交点已知,抛物线的解析式可设成交点式:y=a(x+2)(x4),然后将点C的坐标代入就可求出抛物线的解析式,再将该解析式配成顶点式,即可得到顶点坐标(2)先求出直线CD的解析式,再求出点E的坐标,然后设点P的坐标为(m,n),从而可以用m的代数式表示出PM、EF,然后根据PM=EF建立方程
32、,就可求出m,进而求出点P的坐标(3)先求出点M的坐标,然后设平移后的抛物线的解析式为y=x22x8+c,然后只需考虑三个临界位置(向上平移到与直线EM相切的位置,向下平移到经过点M的位置,向下平移到经过点E的位置)所对应的c的值,就可以解决问题解答:解:(1)根据题意可设抛物线的解析式为y=a(x+2)(x4)点C(0,8)在抛物线y=a(x+2)(x4)上,8a=8a=1y=(x+2)(x4)=x22x8=(x1)29抛物线的解析式为y=x22x8,顶点D的坐标为(1,9)(2)如图,设直线CD的解析式为y=kx+B解得:直线CD的解析式为y=x8当y=0时,x8=0,则有x=8点E的坐标
33、为(8,0)设点P的坐标为(m,n),则PM=(m22m8)(m8)=m2m,EF=m(8)=m+8PM=EF,m2m=(m+8)整理得:5m26m8=0(5m+4)(m2)=0解得:m1=,m2=2点P在对称轴x=1的右边,m=2此时,n=22228=8点P的坐标为(2,8)(3)当m=2时,y=28=10点M的坐标为(2,10)设平移后的抛物线的解析式为y=x22x8+c,若抛物线y=x22x8+c与直线y=x8相切,则方程x22x8+c=x8即x2x+c=0有两个相等的实数根(1)241c=0c=若抛物线y=x22x8+c经过点M,则有22228+c=10c=2若抛物线y=x22x8+c
34、经过点E,则有(8)22(8)8+c=0c=72综上所述:要使抛物线与(2)中的线段EM总有交点,抛物线向上最多平移个单位长度,向下最多平移72个单位长度点评:本题考查了用待定系数法求二次函数的解析式、用待定系数法求一次函数的解析式、解一元二次方程、根的判别式、抛物线与直线的交点问题等知识,而把抛物线与直线相切的问题转化为一元二次方程有两个相等的实数根的问题是解决第三小题的关键,有一定的综合性8、(2009年内蒙古包头)已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方下列结论:;其中正确结论的个数是 个【答案】4【解析】本题考查二次函数图象的画法、识别理解,方程根与系数的关系筀等
35、知识和数形结合能力。根据题意画大致图象如图所示,由与X轴的交点坐标为(-2,0)得,即 所以正确;由图象开口向下知,由与X轴的另一个交点坐标为且,则该抛物线的对称轴为 由aa,所以结论正确;由一元二次方程根与系数的关系知,结合a0得,所以结论正确;由得,而0c2,, -12a-b0,所以结论正确。点拨:是否成立,也就是判断当时,的函数值是否为0;判断中a符号利用抛物线的开口方向来判断,开口向上a0,开口向下a0; ab +c 0; 当x 0时,y 0;方程(a0)有两个大于1的实数根其中错误的结论有 (A) (B) (C) (D) 第18题x =1【答案】C 20(2010广西梧州)已知二次函
36、数y=ax2+bx+c的图像如图7所示,那么下列判断不正确的是( )Aac0 Cb= -4a D关于x的方程ax2+bx+c=0的根是x1=1,x2=5图7-1yx5x=22O【答案】B 25(2010四川广安)已知二次函数的图象如右图所示,下列结论 的实数), 其中正确的结论有 A 1个 B2个 C 3个D4个【答案】B 6(2010 云南玉溪)如图7是二次函数在平面直角坐标系中的图象,根据图形判断 0; +0; 2-0; 2+84中正确的是(填写序号) 图7【答案】 、33. (2010湖北孝感,12,3分)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为,下列结论:
37、ac0;a+b=0;4acb2=4a;a+b+c0.其中正确的个数是( )A. 1 B. 2 C. 3 D. 4【答案】C2. (2011山东日照,17,4分)如图,是二次函数 yax2bxc(a0)的图象的一部分, 给出下列命题 :a+b+c=0;b2a;ax2+bx+c=0的两根分别为-3和1;a-2b+c0其中正确的命题是 (只要求填写正确命题的序号)【答案】14. (2011山东枣庄,18,4分)抛物线上部分点的横坐标,纵坐标的对应值如下表:x21012y04664从上表可知,下列说法中正确的是 (填写序号)抛物线与轴的一个交点为(3,0); 函数的最大值为6;抛物线的对称轴是; 在对
38、称轴左侧,随增大而增大【答案】6. (2011山西,12,2分)已知二次函数的图象如图所示,对称轴为直线,则下列结论正确的是( )A B.方程的两根是 C. D. 当x 0时,y随x的增大而减小Ox1 3第12题y【答案】B18. (2011黑龙江绥化,19,3分)已知二次函数的图象如图所示,现有下列结论:,则其中结论正确的个数是( )个.A、2 B、3 C、4 D、5【答案】B,25. (2011云南玉溪,6,3分)如图,函数的部分图像与x轴、x轴的交点分别为A(1,0),B(0,3),对称轴是x=-1,在下列结论中,错误的是( )A. 顶点坐标为(-1,4) B. 函数的解析式为 C. 当
39、x0时,x随x的增大而增大D.抛物线与x轴的另一个交点是(-3,0) 【答案】C.27. (2011泸,12,2分)已知二次函数y=ax2+bx+c(a,b,c为常数,a0)的图象如图所示,有下列结论:abc0,b24ac0,ab+c0,4a2b+c0,其中正确结论的个数是()A、1B、2C、3D、429. (2011四川雅安12,3分)已知二次函数的图像如图,其对称轴,给出下列结果,则正确的结论是( )A B C D 【答案】 D31. (2011广西崇左,18,3分)已知:二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论中:abc0;2a+b0;a+bm(am+b)(m1的实数);(a+c)2b2;a1.其中正确的项是( )A BCD【答案】A16.如图所示,二次函数y=ax2+bx+c(a0)的图象经过点(-1,2),且与x轴交点的横坐标为x1、x2,其中-2x1-1,0x21,下列结论:abc