《高考数学解题方法.docx》由会员分享,可在线阅读,更多相关《高考数学解题方法.docx(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高考数学解题方法高考数学解题方法 高考数学解题方法1 考点内容有什么变化?复习需要注意什么? 压轴题的解题方法,具体题目还是要具体分析,不能一一而谈,总体来说,思路如下: 1.复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。 2.运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系
2、,用代数式慢慢求解。 3.一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。 另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。 如果遇到找相似的三角形,要切记先看角,再算边。遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。这都是能大大简化运算的。还有一些小技巧,比如用斜边上中线找直角,用面积算垂线等不一而足 具体
3、方法较多,如果有时间,我会举实例进行分析。 最后说一下初中需要掌握的主要的数学思想: 1.方程与函数思想 利用方程解决几何计算已经不能算难题了,建立变量间的函数关系,也是经常会碰到的,常见的建立函数关系的方法有比例线段,勾股定理,三角比,面积公式等 2.分类讨论思想 这个大家碰的多了,就不多讲了,常见于动点问题,找等腰,找相似,找直角三角形之类的。 3.转化与化归思想 就是把一个问题转化为另一个问题,比如把四边形问题转化为三角形问题,还有压轴题中时有出现的找等腰三角形,有时可以转化为找一个和它相似的三角形也是等腰三角形的问题等等,代数中用的也很多,比如无理方程有理化,分式方程整式化等等 4.数
4、形结合思想 高中用的较多的是用几何问题去解决直角坐标系中的函数问题,对于高中生,尽可能从图形着手去解决,比如求点的坐标,可以通过往坐标轴作垂线,把它转化为求线段的长,再结合基本的相似全等三角比解决,尽可能避免用两点间距离公式列方程组,比较典型的是XX年中考,倒数第2题,用解析法的同学列出一个极其复杂的方程后,无法继续求解下去了,而用几何方法,结合相似三角比可以轻易解决。另一个典型的例子是XX二模倒数第2题,用几何法3分钟解决,而用代数法30分钟也未必能解决。所以遇到此类题目,切记先用几何方法,实在做不出再用解析法。 高考数学解题方法2 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技
5、巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 高考数学解题方法3 一、六先六后,因人因卷制宜 在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六
6、先六后的战术原则。 1、先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。 2、先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。 3、先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通
7、比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行兴奋灶的转移,而先同后异,可以避免兴奋灶过急、过频的跳跃,从而减轻大脑负担,保持有效精力。 4、先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗。 5、先点后面。近年的高考数学解答题多呈现为多问渐难式的梯度题,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。 6、先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施分段
8、得分,以增加在时间不足前提下的得分。 二、内紧外松,集中注意,消除焦虑怯场 集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。 三、沉着应战,确保旗开得胜,以利振奋精神 良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生旗开得胜的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发
9、挥心理学所谓的门坎效应,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。 四、调理大脑思绪,提前进入数学情境 考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。 五、一慢一快,相得益彰 有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题
10、过程的基础工程,题目本身是怎样解题的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。 六、确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从数量上,而且从性质上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可
11、兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 七、讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、感情分也就相应低了,此所谓心理学上的光环效应。书写要工整,卷面能得分讲的也正是这个道理。 八、面对难题,讲究方法,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
12、1、缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 2、跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论
13、,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为已知,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。 九、以退求进,立足特殊 发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较
14、强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。 十、应用性问题思路:面点线 解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。 高考数学解题方法4 填空题跟选择题有许多的共同点:小巧灵活,结构简单运算量不大等特点,考察的知识点范围比较广,根据填空时所填写的内容形式,可以将填空题分成以下几种类型: (1)定量型: 要求考生填写数值、数集或
15、数量关系, 如方程的解、不等式的解集、 函数的定义域、值域、值或最小值、 线段长度、角度大小等; (2)定性型: 要求填写的是具有某种性质的对象 或者填写给定数学对象的某种性质, 如填写给定二次曲线的焦点坐标,离心率等. 解答填空题时, 由于不反映过程,只要求结果, 故对正确性的要求比解答题更高、更严格. 因此,我们在复习备考时,要理解各个题型所包含的知识点,只有把各个数学知识点掌握住以后才能熟悉做题技巧。要有合理的分析和判断,要求推理、运算的每一步少算多思将是快速、准确地解答填空题的基本前提。 解答填空题的基本策略是准确、快速、整洁。这跟做选择题是差不多的,只不过选择题中我们还有选项支可以做
16、参考,填空题更要求我们对知识的灵活运用!因此,研究填空题的解题技巧非常有必要。 准确是解答填空题的先决条件,填空题不设中间分,一步失误,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确; 迅速是赢得时间获取高分的必要条件,对于填空题的答题时间,应该控制在不超过20分钟左右,速度越快越好,要避免超时失分现象的发生; 整洁是保住得分的充分条件,只有把正确的答案整洁的书写在答题纸上才能保证阅卷教师正确的批改,在网上阅卷时整洁显得尤为重要。 高考数学填空题一般是基础题或中档题,且绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的
17、推演和判断。小编在这里给大家用几个例题来讲一下解题技巧,高考路上祝大家一臂之力! 直接法 跟选择题一样,填空题有些题目也是可以通过套用公式定理性质直接求解的,拿到题目后,直接根据题干提供的信息通过变形、推理、运算等过程,直接得到结果。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。 特殊化法 当填空题的结论或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等
18、)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。 等价转化法 通过化复杂为简单、化陌生为熟悉,将问题等价地转化成便于解决的问题,从而得出正确的结果。 高考数学解题方法5 一、提前进入角色 很多同学都有这样的习惯,每次刚刚考试完,会有很多遗憾,总想如果这次考试要是重新考的话,我会考得比较好。那么,要想在高考这一次考试中取得比较好的成绩,必须要少留遗憾,最正常的发挥,至于不会做的,或者根本做不出来的谈不上遗憾,就怕自己的水平没有发挥出来。 提前进入角色应该特别关注以下两个问题: 1、生活作息上的适当调整。 首先,调整好自己的生物钟,不要熬夜,做题尽量放在白天与高考同步。其次,尽量
19、保持与平时一致的生活习惯,饮食上不要有太大的改变,避免肠胃不适。再次,要有积极的心理暗示。人的潜力有时候自己都难以相信,当你精力集中、心理暗示到一定程度,可以使自己超水平发挥的。 2、高考前几天要在数学学科做好“保温”。 有三点要注意: 第一、分析订正错题,总结常见的几类错误。 第二、分类看旧题,针对重点内容重点看。看看考试说明要求比较高的知识点,总结一下通性和通法,进行专项内容的总结和分类,形成解决这类问题的常见方法。 第三、适当做一些新题。新题难度不要太大,中等或者偏下。中等可以保持你的斗志,偏下是为了保温。 二、监考发卷后迅速摸清题情 高考会提前五分钟发卷,这五分钟同学们不要答卷,先用一
20、分钟填考试信息,接下来同学们就要尽快地摸清题情。 1、识别试卷中曾做过的,会做的题。 也要注意有没有可能会做,但是需要花大量的时间的题。心里要立刻有一个答题的顺序。 2、舍得放弃,正确对待得与失。 万一遇到某个题从来都没有见过,可以大概看看是哪个类型,用什么方法能解决,这个题目是考察什么,迅速决定是否放弃。如果觉得花两个小时也不一定能做出来,这个时候要舍得放弃,集中自己的精力,解决自己会做的问题,高考考得不是会多少,而是对多少。 三、四先四后 即先易后难、先熟后生、先高后低、先同后异。 1、易与熟:涉及的概念公式方法能融会贯通,脱口而出,一目了然。这样的问题我们很快就能做出来,这就是先“易”和
21、先“熟”。 2、高:选择填空一步5分,相比大题按步骤给分,分数更高。 3、同:三种(选择、填空、解答)。同一种类型的题,尽量放在同一个时间答。这当然也要具体问题具体分析。 高考数学解题方法6 填空题是一种只要求写出结果,不要求写出解答过程的客观性,是中的三种常考题型之一,填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题高考.这说明了填空题是命题改革的试验田,创新型的填空题将会不断出现.数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断.求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫.常用
22、的有直接法、特殊化法、数行结合法、等价转化法等. 一、直接法 这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等,通过变形、推理、运算等过程,直接得到结果. 女生如何学好高中数学6招提高成绩 大量事实和调查数据表明,随着内容的逐步深化,女生逐渐下降,他们越学越用功,却越学越吃力,出现了部分女生严重偏科的现象。因而,对女生的培养应引起重视。 一、“弃重求轻”,培养 女生数学能力的下降,环境因素及因素不容忽视。目前社会、家庭、学校对的期望值普遍过高。而女生性格较为文静、内向,承受能力较差,加上数学学科难度大,因此导致她们的数学学习兴趣淡化,能力下降。因此,要多关心女生的思
23、想和学习,经常同她们平等交谈,了解其思想上、学习上存在的问题,帮助其分析原因,制定,清除紧张,鼓励她们“敢问”、&ldquo高中英语;会问”,激发其学习兴趣。同时,要求能以积极态度对待女生的数学学习,要多鼓励少指责,帮助她们弃掉沉重的思想包袱,轻松愉快地投入到数学学习中;还可以结合女性成才的事例和现实生活中的实例,帮助她们树立学好数学的信心。事实上,女生的情感平稳度比较高,只要她们感兴趣,就会克服困难,努力达到提高数学能力的目的。 二、“开门造车”,注重 在方面,女生比较注重基础,学习较扎实,喜欢做基础题,但解综合题的能力较差,更不愿解难题;女生上课记笔记,时喜欢看课本和笔记,但忽视上课听讲和
24、能力训练;女生注重条理化和规范化,按部就班,但适应性和创新意识较差。因此,教师要指导女生“开门造车”,让她们暴露学习中的问题,有针对地指导,强化双基训练,对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,还可以组织她们学习他人的经验,改进,逐步提高能力。 三、“笨鸟先飞”,强化 女生受生理、心理等因素影响,对的理解、应用能力相对要差一些,对问题的反应速度也慢一些。因此,要提高学习过程中的数学能力,课前的预习至关重要。教学中,要有针对性地指导女生课前的预习,可以编制预习提纲,对抽象的概念、逻辑性较强的推理、空间能力及数形结合能力要求较高的内容,要
25、求通过预习有一定的了解,便于听课时有的放矢,易于突破难点。认真预习,还可以改变心理状态,变被动学习为主动参与。因此,要求女生强化课前预习,“笨鸟先飞”。 四、“固本扶元”,落实“双基” 女生数学能力差,主要表现在对基本技能的理解、掌握和应用上。只有在巩固基础知识和掌握基本技能的前提下,才能提高女生的综合能力。因此,教师要加强对旧知识的复习和基本技能的训练,结合讲授新课组织复习;也可以通过基础知识的训练,使学生对已学的知识进行巩固和提高,使他们具备学习新知识所必需的基本能力,从而对新知识的学习和掌握起到促进作用。 五、“扬长补短”,增加自信 在数学学习过程中,女生在运算能力方面,规范性强,准确率
26、高,但运算速度偏慢、技巧性不强;在逻辑能力方面,善于直接推理、条理性强,但间接推理欠缺、方式单一;在空间想象能力方面,直觉敏捷、表达准确,但线面关系含混、作图能力差;在应用能力方面,“解模”能力较强,但“建模”能力偏差。因此,教学中要注意发挥女生的长处,增加其自信心,使其有正视挫折的勇气和战胜困难的决心。特别要针对女生的弱点进行教学,多讲通解通法和常用技巧,注意速度训练,分析问题既要“由因导果”,也要“执果索因”,暴露过程,激活思维;注重数形结合,适当增加直观教学,训练作图能力,培养;揭示实际问题的空间形式和数量关系,培养“建模”能力。 六、“举一反三”,提高能力 “上课能听懂,作业能完成,就
27、是成绩提不高。”这是高中阶段女生共同的“心声”。由于课堂信息容量小,知识单一,在的指导下,女生一般能听懂;课后的练习多是直接应用概念套用算法,过程简单且技能技巧要求较低,她们能完成。但因速度和时间等方面的影响,她们不大注重课后的理解掌握和能力提高。因此,教学中要编制“套题”(知识性,技能性)、“类题”(基础类,综合类,方法类)、“变式题”(变条件,变结论,变思想,变方法),并对其中具有代表性的问题进行详尽的剖析,起到“举一反三”、“触类旁通”的作用,这有利于提高女生的数学能力。 高考数学解题方法7 高考数学怎么解题速度最快 1、熟悉基本的解题步骤和解题方法 解题的过程,是一个思维的过程。对一些
28、基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。 2、审题要认真仔细 对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。 有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。 3、认真做好归纳总结 在解过一定数量的习题之后,对所涉及到的知识
29、、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。 4、熟悉习题中所涉及的内容 解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。 因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。 学习学不下去了可以看下这本书,淘宝搜索高考蝶变购买 5、学会画图 画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题
30、目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。 因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。 6、先易后难,逐步增加习题的难度 人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。 我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。 7、限时答题,先提速后纠正
31、错误 很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。这个过程对提高书写速度和思考效率都有较好的作用。当你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。 高考数学解题技巧 方法一、调理大脑思绪,提前进入数学情境 考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒
32、常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。 方法二、“内紧外松”,集中注意,消除焦虑怯场 集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。 方法三、沉着应战,确保旗开得胜,以利振奋精神 良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试
33、题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。 方法四、“六先六后”,因人因卷制宜 在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。 1、先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力
34、求有效,不能走马观花,有难就退,伤害解题情绪。 2、先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。 3、先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大
35、脑负担,保持有效精力。 4、先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基础。 5、先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。 6、先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。 方法五、一“慢”一“快”,相得益彰 有些考生只知道考场上一味地要快,结果题意未清,
36、条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。 方法六、确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继
37、各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 方法七、讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是
38、这个道理。 方法八、面对难题,讲究方法,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 1、缺步解答。 对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。 如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,
39、从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 2、跳步解答。 解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。 若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。 方法九
40、、以退求进,立足特殊,发散一般 对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。 方法十、执果索因,逆向思考,正难则反 对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。 方法十一、回避结论的肯定与否定,解决探索性问题
41、对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。 方法十二、应用性问题思路:面点线 解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。 高考数学解题方法8 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点
42、题型分析 题型一:利用导数研究函数的极值、最值。 1.在区间上的最大值是2 2.已知函数处有极大值,则常数c=6; 3.函数有极小值-1,极大值3 题型二:利用导数几何意义求切线方程 1.曲线在点处的切线方程是 2.若曲线在P点处的切线平行于直线,则P点的坐标为(1,0) 3.若曲线的一条切线与直线垂直,则的方程为 4.求下列直线的方程: (1)曲线在P(-1,1)处的切线;(2)曲线过点P(3,5)的切线; 解:(1) 所以切线方程为 (2)显然点P(3,5)不在曲线上,所以可设切点为,则又函数的导数为, 所以过点的切线的斜率为,又切线过、P(3,5)点,所以有,由联立方程组得,即切点为(1
43、,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数的切线方程为y=3x+1 ()若函数处有极值,求的表达式; ()在()的条件下,求函数在-3,1上的最大值; ()若函数在区间-2,1上单调递增,求实数b的取值范围 解:(1)由 过的切线方程为: 而过 故 由得a=2,b=-4,c=5 (2) 当 又在-3,1上最大值是13。 (3)y=f(x)在-2,1上单调递增,又由知2a+b=0。 依题意在-2,1上恒有0,即 当; 当; 当 综上所述,参数b的取值范围是 2.已知三次函数在和时取极值,且
44、. (1)求函数的表达式; (2)求函数的单调区间和极值; (3)若函数在区间上的值域为,试求、应满足的条件. 解:(1), 由题意得,是的两个根,解得,. 高考数学解题方法9 提高解数学综合性问题的能力是提高高考数学成绩的根本保证。解好综合题对于那些想考一流大学,并对数学成绩期望值较高的同学来说,是一道生命线,往往成也萧何败也萧何;对于那些定位在二流大学的学生而言,这里可是放手一搏的好地方。 1.综合题在高考试卷中的位置与作用: 数学综合性试题常常是高考试卷中把关题和压轴题。在高考中举足轻重,高考的区分层次和选拔使命主要靠这类题型来完成预设目标。目前的高考综合题已经由单纯的知识叠加型转化为知
45、识、方法和能力综合型尤其是创新能力型试题。综合题是高考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点。 2.解综合性问题的三字诀: 三性:综合题从题设到结论,从题型到内容,条件隐蔽,变化多样,因此就决定了审题思考的复杂性和解题设计的多样性。在审题思考中,要把握好三性,即: (1)目的性:明确解题结果的终极目标和每一步骤分项目标。 (2)准确性:提高概念把握的准确性和运算的准确性。 (3)隐含性:注意题设条件的隐含性。审题这第一步,不要怕慢,其实慢中有快,解题方向明确,解题手段合理,这是提高解题速度和准确性的前提和保证。 三化: (1)问题具体化(包括抽象函数用具有相同性质的具体函数作为代表来研究,字母用常数来代表)。即把题目中所涉及的各种概念或概念之间的关系具