《人教版高中数学必修一复习提纲.doc》由会员分享,可在线阅读,更多相关《人教版高中数学必修一复习提纲.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上数学必修一复习提纲第一章 集合及其运算一集合的概念、分类:二集合的特征: 确定性 无序性 互异性三表示方法: 列举法 描述法 图示法 区间法四两种关系: 从属关系:对象 、 集合;包含关系:集合 、 集合五三种运算: 交集: 并集: 补集:六运算性质: , 空集是任意集合的子集,是任意非空集合的真子集 若,则, , , 集合的所有子集的个数为,所有真子集的个数为,所有非空真子集的个数为,所有二元子集(含有两个元素的子集)的个数为第二章 函数指数与对数运算一分数指数幂与根式:如果,则称是的次方根,的次方根为0,若,则当为奇数时,的次方根有1个,记做;当为偶数时,负数没有
2、次方根,正数的次方根有2个,其中正的次方根记做负的次方根记做1负数没有偶次方根;2两个关系式:;3、正数的正分数指数幂的意义:; 正数的负分数指数幂的意义:4、分数指数幂的运算性质: ; ; ; ; ,其中、均为有理数,均为正整数二对数及其运算1定义:若,且,则2两个对数: 常用对数:,; 自然对数:,3三条性质: 1的对数是0,即; 底数的对数是1,即; 负数和零没有对数4四条运算法则: ; ; ; 5其他运算性质: 对数恒等式:; 换底公式:; ; 函数的概念一映射:设A、B两个集合,如果按照某中对应法则,对于集合A中的任意一个元素,在集合B中都有唯一的一个元素与之对应,这样的对应就称为从
3、集合A到集合B的映射二函数:在某种变化过程中的两个变量、,对于在某个范围内的每一个确定的值,按照某个对应法则,都有唯一确定的值和它对应,则称是的函数,记做,其中称为自变量,变化的范围叫做函数的定义域,和对应的的值叫做函数值,函数值的变化范围叫做函数的值域三函数是由非空数集到非空数集B的映射四函数的三要素:解析式;定义域;值域函数的解析式一根据对应法则的意义求函数的解析式;例如:已知,求函数的解析式二已知函数的解析式一般形式,求函数的解析式;例如:已知是一次函数,且,函数的解析式三由函数的图像受制约的条件,进而求的解析式函数的定义域一根据给出函数的解析式求定义域: 整式: 分式:分母不等于0 偶
4、次根式:被开方数大于或等于0 含0次幂、负指数幂:底数不等于0 对数:底数大于0,且不等于1,真数大于0二根据对应法则的意义求函数的定义域: 例如:已知定义域为,求定义域; 已知定义域为,求定义域;三实际问题中,根据自变量的实际意义决定的定义域函数的值域一基本函数的值域问题:名称解析式值域一次函数二次函数时,时,反比例函数,且指数函数对数函数三角函数二求函数值域(最值)的常用方法:函数的值域决定于函数的解析式和定义域,因此求函数值域的方法往往取决于函数解析式的结构特征,常用解法有:观察法、配方法、换元法(代数换元与三角换元)、常数分离法、单调性法、不等式法、*反函数法、*判别式法、*几何构造法
5、和*导数法等反函数一反函数:设函数的值域是,根据这个函数中,的关系,用把表示出,得到若对于中的每一值,通过,都有唯一的一个与之对应,那么,就表示是自变量,是自变量的函数,这样的函数叫做函数的反函数,记作,习惯上改写成二函数存在反函数的条件是:、一一对应三求函数的反函数的方法: 求原函数的值域,即反函数的定义域 反解,用表示,得 交换、,得 结论,表明定义域四函数与其反函数的关系: 函数与的定义域与值域互换 若图像上存在点,则的图像上必有点,即若,则 函数与的图像关于直线对称函数的奇偶性:一定义:对于函数定义域中的任意一个,如果满足,则称函数为奇函数;如果满足,则称函数为偶函数二判断函数奇偶性的
6、步骤:1判断函数的定义域是否关于原点对称,如果对称可进一步验证,如果不对称;2验证与的关系,若满足,则为奇函数,若满足,则为偶函数,否则既不是奇函数,也不是偶函数二奇函数的图象关于原点对称,偶函数的图象关于y轴对称三已知、分别是定义在区间、上的奇(偶)函数,分别根据条件判断下列函数的奇偶性奇奇奇奇奇偶奇偶奇偶奇偶奇偶偶偶偶偶五若奇函数的定义域包含,则六一次函数是奇函数的充要条件是; 二次函数是偶函数的充要条件是函数的周期性:一定义:对于函数,如果存在一个非零常数,使得当取定义域内的每一个值时,都有,则为周期函数,为这个函数的一个周期2如果函数所有的周期中存在一个最小的正数,那么这个最小正数就叫
7、做的最小正周期如果函数的最小正周期为,则函数的最小正周期为函数的单调性一定义:一般的,对于给定区间上的函数,如果对于属于此区间上的任意两个自变量的值,当时满足: ,则称函数在该区间上是增函数; ,则称函数在该区间上是减函数二判断函数单调性的常用方法:1定义法: 取值; 作差、变形; 判断: 定论:*2导数法: 求函数f(x)的导数; 解不等式,所得x的范围就是递增区间; 解不等式,所得x的范围就是递减区间3复合函数的单调性: 对于复合函数,设,则,可根据它们的单调性确定复合函数,具体判断如下表:增增减减 增减增减 增减减增4奇函数在对称区间上的单调性相反;偶函数在对称区间上的单调性相同函数的图
8、像一基本函数的图像二图像变换: 将图像上每一点向上或向下平移个单位,可得的图像 将图像上每一点向左或向右平移个单位,可得的图像 将图像上的每一点横坐标保持不变,纵坐标拉伸或压缩为原来的倍,可得的图像 将图像上的每一点纵横坐标保持不变,横坐标压缩或拉伸为原来的,可得的图像 关于轴对称 关于轴对称 将位于轴左侧的图像去掉,再将轴右侧的图像沿轴对称到左侧,可得的图像 将位于轴下方的部分沿轴对称到上方,可得的图像三函数图像自身的对称关系图像特征关于轴对称关于原点对称关于轴对称关于直线对称关于直线轴对称关于直线对称周期函数,周期为四两个函数图像的对称关系图像特征与关于轴对称与关于轴对称与关于原点对称与关于直线对称与关于直线对称与关于轴对称专心-专注-专业