《矩形的性质和判定(共7页).doc》由会员分享,可在线阅读,更多相关《矩形的性质和判定(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上初中数学矩形的性质和判定编稿老师巩建兵一校黄楠二校杨雪审核宋树庆【考点精讲】【典例精析】例题1 如图,在ABC中,AB6,AC8,BC10,P为边BC上一动点(且点P不与点B、C重合),PEAB于点E,PFAC于点F,M为EF中点。设AM的长为x,试求x的最小值。思路导航:根据勾股定理的逆定理求出ABC是直角三角形,得出四边形AEPF是矩形,所以AMEFAP,在RtABC中利用AP求出x的最小值。答案:解:连接AP,AB6,AC8,BC10,AB2AC23664100,BC2100,AB2AC2BC2,BAC90,PEAB,PFAC,AEPAFPBAC90,四边形AE
2、PF是矩形,APEF,BAC90,M为EF中点,AMEFAP,当APBC时,AP值最小,此时SBAC6810AP,AP4.8,即x的最小值为2.4。点评:本题考查了垂线段最短,三角形面积,勾股定理的逆定理,矩形的判定等的应用,关键是求出AP的最小值和得出AM与AP的数量关系。例题2 请看下面小明同学完成的一道证明题的思路:如图1,已知ABC中,ABAC,CDAB,垂足是D,P是BC边上任意一点,PEAB,PFAC,垂足分别是E、F。求证:PEPFCD。证明思路:如图2,过点P作PGAB交CD于点G,则四边形PGDE为矩形,PEGD;又可证PGCCFP,则PFCG;所以PEPFDGGCDC。如图
3、3,若P是BC延长线上任意一点,其他条件不变,则PE、PF与CD有何关系?请你写出结论并完成证明过程。思路导航:采用与题目相同的思路,过点C作CGPE,利用矩形的性质和全等三角形的性质确定PE、PF、CD之间的关系。答案:结论:PEPFCD。证明:过点C作CGPE于点G,PEAB,CDAB,CDEDEGEGC90。四边形CGED为矩形。CDGE,GCAB。GCPB。ABAC,BACB。FCPACBBGCP。在PFC和PGC中,FCGP90,FCPGCP,CPCP,PFCPGC(AAS)。PFPG。PEPFPEPGGECD。点评:本题通过构造矩形和三角形全等,利用矩形和全等三角形的判定和性质求解
4、。解答这类阅读理解问题,读懂题目提供的解题思路是解题关键。例题3 如图,已知ABC中,ABAC,BADCAD,F为BA延长线上的一点,AE平分FAC,DEAB交AE于点E。(1)求证:AEBC;(2)求证:四边形AECD是矩形;(3)BC6cm,SAECD12cm2,求AB的长。思路导航:(1)先根据已知条件求出ADBC,再根据AE平分FAC,得出EAD90,从而证出AEBC;(2)先判定四边形AECD是平行四边形,再根据ADC90,证出四边形AECD是矩形;(3)由BC6cm,得出CD3cm,再根据SAECD12cm2,得出AD4,利用勾股定理求出AC的长即可。答案:(1)证明:ABAC,B
5、ADCAD,ADBC,ADB90,AE平分FAC,FAEEACCADBAD180,EACCADEAD90,AEBC;(2)证明:DEAB,AEBC,四边形ABDE是平行四边形,AEBD,BDCD,AECD,四边形AECD是平行四边形,ADC90,四边形AECD是矩形;(3)解:BC6cm,CD3cm,SAECD12cm2,AD4,ABAC5,AB的长是5cm。点评:此题考查了矩形的判定和性质的综合应用,用到的知识点是平行四边形的判定与性质、等腰三角形的性质、平行线的性质、勾股定理等,这类问题一般要综合利用各种有关性质,是中考命题的热点。【总结提升】1. 关于矩形的判定:有一个角是直角的平行四边
6、形是矩形。对角线相等的平行四边形是矩形。有三个角是直角的四边形是矩形。对角线相等且互相平分的四边形是矩形。说明:长方形和正方形都是矩形。2. 关于矩形的性质:矩形的4个内角都是直角;矩形的对角线相等且互相平分;矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。矩形具有平行四边形的所有性质。3. 矩形的对角线把自身分成若干个直角三角形和等腰三角形,因此很多矩形问题都可以转化成直角三角形或等腰三角形的问题加以解决。直角三角形的重要性质主要有:直角三角形斜边上的中线等于斜边的一半;直角三角形两锐角互余;勾股定理;直角三角形中30角所对的直角边等于斜边的一半。
7、(答题时间:20分钟)一、选择题1. 下列关于矩形的说法,正确的是( )A. 对角线相等的四边形是矩形B. 对角线互相平分的四边形是矩形C. 矩形的对角线互相垂直且平分D. 矩形的对角线相等且互相平分*2. 如图,在ABC中,AB8,BC6,AC10,D为边AC上一动点,DEAB于点E,DFBC于点F,则EF的最小值为( )A. 2.4B. 3C. 4.8D. 5*3. ABC中,ABAC5,BC6,点D是BC上的一点,那么点D到AB与AC的距离的和为( )A. 5B. 6C. 4D. 二、填空题4. 如图,在ABC中,ABAC,ADBC,垂足为D,E是AC的中点。若DE5,则AB的长为_。*
8、5. 如图所示,ABC中,AC的垂直平分线分别交AC、AB于点D、F,BEDF交DF的延长线于点E,已知A30,BC2,AFBF,则四边形BCDE的面积是_。三、解答题*6. 已知:如图所示,D是ABC中AB边上的中点,ACE和BCF分别是以AC、BC为斜边的等腰直角三角形,连接DE、DF。求证:DEDF。*7. 如图,O为ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG。(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点O所在位置应满足什么条件?说明理由。1. D 解析:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形
9、是矩形。2. C 解析:如图,连接BD。在ABC中,AB8,BC6,AC10,AB2BC2AC2,即ABC90。又DEAB于点E,DFBC于点F,四边形EDFB是矩形,EFBD。BD的最小值为直角三角形ABC斜边上的高,ACBDABAC,BD4.8,EF的最小值为4.8,故选C。3. D 解析:作ABC的高CQ,AH,过C作CZDE,交ED的延长线于点Z,ABAC5,BC6,AHBC,BHCH3,根据勾股定理得:AH4,根据三角形的面积公式得:BCAHABCQ,即:645CQ,解得:CQ,CQAB,DEAB,CZDE,CQEQEZZ90,四边形QEZC是矩形,CQZE。再证明ZCDFCD,得D
10、FDZ,DEDFCQ。4. 10 解析:在ABC中,ADBC,垂足为D,ADC是直角三角形;E是AC的中点。DEAC(直角三角形的斜边上的中线等于斜边的一半);又DE5,ABAC,AB10。5. 2 解析:AFBF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,DF为三角形ABC的中位线,DEBC,DFBC,又ADF90,CADF90,又BEDE,E90,四边形BCDE为矩形,BC2,DFBC1,在RtADF中,A30,DF1,AD,CDAD,则矩形BCDE的面积SCDBC2。6. 证明:分别取AC、BC中点M、N,连接MD、ND,再连接EM、FN,D为AB中点,AEC90,BFC9
11、0,EMDNAC,FNMDBC,DNCM且DNCM,四边形MDNC为平行四边形,CMDCND。EMCFNC90,EMCCMDFNCCND,即EMDFND,EMDDNF(SAS)。DEDF。7. (1)四边形DEFG是平行四边形。理由如下:D、G分别是AB、AC的中点,DG是ABC的中位线;DGBC,且DGBC;同理可证:EFBC,且EFBC;DGEF,且DGEF,故四边形DEFG是平行四边形;(2)O在BC边的高上(且不与点A和垂足重合)。理由如下:连接OA;把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG。DEOAGF,EFBC,O点在BC边的高上,AOBC,AOEF,DEOA,DEEF,四边形DEFG是矩形。专心-专注-专业