《2018年高考数学总复习-三角恒等变换.doc》由会员分享,可在线阅读,更多相关《2018年高考数学总复习-三角恒等变换.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第三节三角恒等变换考纲解读会用向量的数量积推导出两角差的余弦公式.能利用两角差的余弦公式导出两角差的正弦,正切公式.能利用两角差的余弦公式导出两角和的正弦,余弦,正切公式,导出二倍角的正弦,余弦,正切公式,了解它们的内在联系.能利用上述公式进行简单的恒等变换(包括导出积化和差,和差化积,半角公式,但对这三种公式不要求记忆).命题趋势探究高考必考,在选择题,填空题和解答题中都有渗透,是三角函数的重要变形工具.分值与题型稳定,属中下档难度.考题以考查三角函数式化简,求值和变形为主.化简求值的核心是:探索已知角与未知角的联系,恒等变换(化同角同函). 知识点精讲常用三角恒等
2、变形公式和角公式差角公式倍角公式降次(幂)公式半角公式辅助角公式角的终边过点,特殊地,若或,则常用的几个公式题型65两角和与差公式的证明题型归纳及思路提示思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.例4.33证明(1)(2)用证明(3)用(1)(2)证明解析(1)证法一:如图432(a)所示,设角的终边交单位圆于,由余弦定理得证法二:利用两点间的距离公式.如图432(b)所示由得,故即化简得变式证明:题型66化简求值思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值
3、:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:将待求式用已知三角函数表示;将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角.一、化同角同函
4、例4.34已知则解析解法一:化简所求式由得即两边平方得即所以故选.解法二:化简所求式故选.评注解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单.变式1若则变式2若,是第三象限角,则变式3(2012江西理)若,则二、建立已知角与未知角的联系(通过凑配角建立) 将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式. 常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等.1.和、差角变换如可变为;可变为;可变为例4.
5、35若则的值为().或分析建立未知角与已知角的联系,解析解法一:因为所以,则解法二:因为,所示故选.评注利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号.变式1已知则 变式2 若,则二、辅助角公式变换例4.36已知,则的值为(). 分析将已知式化简,找到与未知式的联系.解析由题意,得所以故选.变式1设则a,b,c的大小关系为().A.abc B.bca C.acb D.bac变式2设则下列各式中正确的是().3.倍角,降幂(次)变换例4.37(2012大纲全国理7)已知为第二象限角,则 分析利用同角三角函
6、数的基本关系式及二倍角公式求解.解析解法一:;因为所以得,即.又因为为第二象限角且,则所以故为第三象限角,.故选.解法二:由为第二象限角,得,且,又,则,得,所以, 故选. 变式1若则 变式2(2012江苏11)设为锐角,若,则的值省为.变式3已知且求值.变式4若,则变式5已知,且,则4.诱导变换例4.38若,则 分析化同函以便利用已知条件.解析解法一:故选.解法二:则故故选.变式1是第二象限角,则变式2若,则最有效训练题19(限时45分钟)1.已知函数设,则的大小关系为( ). A.abc B. cab C.bac D.bca2.若,则3.若,则 4.已知,且,则 5.函数的部分图像如图433所示,设是图像的最高点,是图像与x轴的交点,则.10.8 6.函数的最大值是(). 7.已知,则8.已知满足,则9. 10.已知,且,则11.已知函数(1)求函数的最小正周期和值域;(2)若是第二象限角,且,求的值.12.已知三点(1)若,求角;(2)若,求的值.专心-专注-专业