2022年深圳市龙岗区七级上期末数学试卷含答案解析.pdf

上传人:H****o 文档编号:14754610 上传时间:2022-05-06 格式:PDF 页数:21 大小:971.87KB
返回 下载 相关 举报
2022年深圳市龙岗区七级上期末数学试卷含答案解析.pdf_第1页
第1页 / 共21页
2022年深圳市龙岗区七级上期末数学试卷含答案解析.pdf_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022年深圳市龙岗区七级上期末数学试卷含答案解析.pdf》由会员分享,可在线阅读,更多相关《2022年深圳市龙岗区七级上期末数学试卷含答案解析.pdf(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、广东省深圳市龙岗区2016 届九年级上学期期末数学试卷一、选择题:以下每题只有一个正确的选项,请将答题卡上的正确选项涂黑,每小题3 分,共 36分1如图所示几何体的俯视图是()ABCD2在一个不透明的口袋中,装有若干个红球和4 个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A12 个B16 个C20 个D25 个31m 长的标杆直立在水平地面上,它在阳光下的影子长度为0.8m,同一时刻,某电视塔的影子长度为 100m,则该电视塔的高度为()A150m B125m C120m D80

2、m 4三角形两边的长是3 和 4,第三边的长是方程x212x+35=0 的根,则该三角形的周长为()A12 B14 C12 或 14 D以上都不对5在正方形网格中,ABC 的位置如图所示,则cosB 的值为()ABCD6下列命题中,错误的是()A三角形三边的垂直平分线的交点到三个顶点的距离相等B两组对角分别相等的四边形是平行四边形C对角线相等且互相平分的四边形是矩形D顺次连接菱形各边中点所得的四边形是正方形7某旅游景点2015 年六月份共接待游客25 万人次,八月份共接待游客64 万人次,设六至八月每月游客人次的平均增长率为x,则可列方程为()精品资料 - - - 欢迎下载 - - - - -

3、 - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 21 页 - - - - - - - - - - A25(1+x)2=64 B25(1x)2=64 C64(1+x)2=25 D64(1x)2=25 8一元二次方程ax2+x2=0 有两个不相等实数根,则a 的取值范围是()AaBa=Ca且 a 0 Da且 a 0 9将抛物线 y=5x2+1 先向左平移3 个单位,再向下平移2 个单位, 所得抛物线的解析式为()Ay=5(x+3)22 By=5(x+3)21 Cy=5(x3)22 Dy=5(x3)21 10 如图,在 RtABC 中,ACB=90

4、 , CDAB 于 D, 若 AC=4 , BC=3 , 则 tanACD 的值为()ABCD11如图,已知A 是双曲线 y= (x0)上一点,过点A 作 AB x 轴,交双曲线y= (x0)于点 B,若 OA OB,则的值为()ABCD12已知二次函数y=ax2+bx+c (a 0)的图象如图所示,有下列结论: abc0; b24ac0; 3a+c0; 16a+4b+c0其中正确结论的个数是()A1 个 B2 个 C3 个 D4 个二、填空题:本大题共4 小题,每题3 分,共 12 分,请将答案填入答题卡指定位置上精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢

5、迎下载 名师归纳 - - - - - - - - - -第 2 页,共 21 页 - - - - - - - - - - 13方程4x(2x+1)=3(2x+1)的解为14如图, AOP= BOP=15 ,PCOA ,PDOA,若 PC=4,则 PD 的长为15如图,直线y= x1 与坐标轴交于A、B 两点,点 P 是曲线 y= (x0)上一点,若PAB 是以APB=90 的等腰三角形,则k=16如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即 n=20)根时,需要的火柴棍总数为根三、解答题:共52 分17计算: |tan60 2|+0()2+18如图,有四张背面相

6、同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后放在桌面上(1)小红从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明从这四张纸牌中随机摸出两张,用树状图或表格法,求摸出的两张牌面图形都是中心对称图形的概率精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 21 页 - - - - - - - - - - 19某中学2016届九年级学生开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度,如图,他们先在点C 测得教学楼AB 的顶点 A 的仰

7、角为 30 ,然后向教学楼前进20 米到达点D,又测得点 A 的仰角为 45 ,请根据这些数据,求这幢教学楼的高度(最后结果精确到1 米,参考数据 1.732)20如图,在矩形ABCD中,E是BC边上的点,AE=BC,DFAE,垂足为F,连接DE(1)求证: AB=DF ;(2)若 AD=10 ,AB=6 ,求 tanEDF 的值21如图,已知A( 4,n) ,B(2,4)是反比例函数y= 的图象和一次函数y=ax+b 的图象的两个交点(1)求反比例函数和一次函数的解析式;(2)求 AOB 的面积;(3)根据图象直接写出不等式ax+b0 的解集22某宾馆客房部有60 个房间供游客居住,当每个房

8、间的定价为每天200 元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10 元,就会有1 个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20 元的各种费用设每个房间的定价增加x 元,每天的入住量为y 个,客房部每天的利润为w元(1)求 y 与 x 的函数关系式;(2)求 w 与 x 的函数关系式,并求客房部每天的最大利润是多少?(3)当 x 为何值时,客房部每天的利润不低于14000 元?23如图 ,已知二次函数y=x2+2x+3 的图象与 x 轴交于点A、B,与 y 轴交于点C(1)求 ABC 的面积精品资料 - - - 欢迎下载 - - - - - - - - -

9、- - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 21 页 - - - - - - - - - - (2)点M在OB边上以每秒1个单位的速度从点O向点B运动, 点N在BC边上以每秒个单位得速度从点B 向点 C 运动,两个点同时开始运动,同时停止设运动的时间为t 秒,试求当t 为何值时,以 B、M、N 为顶点的三角形与BOC 相似?(3)如图 ,点 P 为抛物线上的动点,点Q 为对称轴上的动点,是否存在点P、Q,使得以 P、Q、C、B 为顶点的四边形是平行四变形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由精品资料 - - - 欢迎下载 - -

10、- - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 21 页 - - - - - - - - - - 广东省深圳市龙岗区2016 届九年级上学期期末数学试卷参考答案与试题解析一、选择题:以下每题只有一个正确的选项,请将答题卡上的正确选项涂黑,每小题3 分,共 36分1如图所示几何体的俯视图是()ABCD【考点】 简单组合体的三视图【分析】 根据从上面看得到的图形是俯视图,可得答案【解答】 解:从上面看中间是一个正方形,左右各一个矩形,故选: D【点评】 本题考查了简单组合体的三视图,从上面看得到的图形是俯视图2在一个不透明的口袋中,装有

11、若干个红球和4 个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A12 个B16 个C20 个D25 个【考点】 利用频率估计概率【分析】 在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解【解答】 解:设盒子中有红球x 个,由题意可得:=0.2,解得: x=16,故选 B【点评】 此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率关键是根据黄球的概率得到相应的等量关系31m 长的标杆直立在水平地面上,它

12、在阳光下的影子长度为0.8m,同一时刻,某电视塔的影子长度为 100m,则该电视塔的高度为()A150m B125m C120m D80m 【考点】 相似三角形的应用【分析】 在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似【解答】 解:设电视塔的高度应是x,根据题意得:=,解得: x=125,故选: B精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 21 页 - - - - - - - - - - 【点评】 此题主要考查了相似三角形

13、的应用,利用相似比,列出方程,通过解方程求出电视塔的高度,体现了方程的思想4三角形两边的长是3 和 4,第三边的长是方程x212x+35=0 的根,则该三角形的周长为()A12 B14 C12 或 14 D以上都不对【考点】 解一元二次方程-因式分解法;三角形三边关系【分析】 首先利用因式分解法求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长【解答】 解:解方程x212x+35=0 ,得 x1=5,x2=7,即第三边的边长为5或7三角形两边的长是3 和 4,1第三边的边长7,第三边的边长为5,这个三角形的周长是3+4+5=12 故选 A【点评】 本题考查了解一元二次方程因式

14、分解法,三角形的三边关系已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和5在正方形网格中,ABC 的位置如图所示,则cosB 的值为()ABCD【考点】 勾股定理;锐角三角函数的定义【专题】 压轴题;网格型【分析】 先设小正方形的边长为1,然后找个与 B 有关的 RTABD ,算出 AB 的长,再求出BD的长,即可求出余弦值【解答】 解:设小正方形的边长为1,则 AB=4,BD=4 ,cosB=故选 B【点评】 本题考查了锐角三角函数的定义以及勾股定理的知识,此题比较简单,关键是找出与角B有关的直角三角形精品资料 - - - 欢迎下载 - - - - - - - - -

15、- - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 21 页 - - - - - - - - - - 6下列命题中,错误的是()A三角形三边的垂直平分线的交点到三个顶点的距离相等B两组对角分别相等的四边形是平行四边形C对角线相等且互相平分的四边形是矩形D顺次连接菱形各边中点所得的四边形是正方形【考点】 命题与定理【分析】 根据三角形外心的性质对A 进行判断;根据平行四边形的判定方法对B 进行判断;根据矩形的判定方法对C 进行判断;根据三角形中位线性质和菱形的性质对D 进行判断【解答】 解: A、三角形三边的垂直平分线的交点到三个顶点的距离相等,所以A 选项为真命题

16、;B、两组对角分别相等的四边形是平行四边形,所以B选项为真命题;C、对角线相等且互相平分的四边形是矩形,所以C 选项为真命题;D、顺次连接菱形各边中点所得的四边形是矩形,所以D 选项为假命题故选 D【点评】 本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“ 如果 那么 ” 形式 有些命题的正确性是用推理证实的,这样的真命题叫做定理7某旅游景点2015 年六月份共接待游客25 万人次,八月份共接待游客64 万人次,设六至八月每月游客人次的平均增长率为x,则可列方程为()A25(1+x)2=64 B

17、25(1x)2=64 C64(1+x)2=25 D64(1 x)2=25 【考点】 由实际问题抽象出一元二次方程【专题】 增长率问题【分析】 本题依题意可知七月份的人数=25(1+x) ,则八月份的人数为:25(1+x) (1+x) 再令 25(1+x) (1+x)=64,即可得出答案【解答】 解:设六至八月每月游客人次的平均增长率为x,依题意得25(1+x)2=64故选 A【点评】 此题主要考查了由实际问题抽象出一元二次方程中增长率的问题,一般公式为:原来的量(1 x)2=现在的量, x 为增长或减少的百分率增加用+,减少用8一元二次方程ax2+x2=0 有两个不相等实数根,则a 的取值范围

18、是()AaBa=Ca且 a 0 Da且 a 0 【考点】 根的判别式;一元二次方程的定义【分析】 根据已知得出b24ac=124a?( 2) 0,求出即可【解答】 解: 一元二次方程ax2+x2=0 有两个不相等实数根,b24ac=124a?(2)0,解得: a且 a 0,故选 C【点评】 本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0 (a、b、c 为常数, a 0)的根的判别式是b24ac,当 b24ac 0时,方程有两个不相等的实数根,当b24ac=0 时,方程有两个相等的实数根,当b24ac0 时,方程没有实数根精品资料 - - - 欢迎下载 - - - - - -

19、 - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 21 页 - - - - - - - - - - 9将抛物线 y=5x2+1 先向左平移3 个单位,再向下平移2 个单位, 所得抛物线的解析式为()Ay=5(x+3)22 By=5(x+3)21 Cy=5(x3)22 Dy=5(x3)21 【考点】 二次函数图象与几何变换【分析】 根据 “ 左加右减、上加下减” 的原则进行解答即可【解答】 解:把抛物线y=5x2+1 向左平移 3 个单位得到抛物线y=5(x+3)2+1 的图象,再向下平移2 个单位得到抛物线y=5(x+3)2+12 的图象,即y=5

20、(x+3)21故选 B【点评】 本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键10 如图,在RtABC中,ACB=90 ,CDAB于D, 若AC=4,BC=3, 则tanACD的值为()ABCD【考点】 解直角三角形【分析】根据在 RtABC 中,ACB=90 , CDAB 于 D, 可以得到 B 与ACD 的关系,由 AC=4 ,BC=3 ,可以求得 B 的正切值,从而可以得到ACD 的正切值【解答】 解: 在 RtABC 中,ACB=90 ,CDAB 于 D,CDA=90 ,A+ B=90 ,A+ ACD=90 ,B= ACD ,在 RtABC 中, ACB=

21、90 ,AC=4 ,BC=3 ,tanB=,tanB= ,tanACD=,故选 A【点评】 本题考查解直角三角形,解题的关键是找出与所求角相等的角,然后根据相等的角的正切值相等,进行等量代换解答本题11如图,已知A 是双曲线 y= (x0)上一点,过点A 作 AB x 轴,交双曲线y= (x0)于点 B,若 OA OB,则的值为()精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 21 页 - - - - - - - - - - ABCD【考点】 相似三角形的判定与性质;反比例函数图象上点的坐标

22、特征【分析】 首先根据A、B点所在位置设出A、B两点的坐标,再利用勾股定理表示出AO2,BO2以及 AB 的长,再表示出,进而可得到【解答】 解: A 点在双曲线y= (x0)上一点,设 A( , m) ,AB x 轴,B 在双曲线 y=(x0)上,设 B(,m) ,OA2=+m2,BO2=+m2,OAOB,OA2+BO2=AB2,+m2+m2=( +)2,m2=,= ,=,故选C【点评】 此题主要考查了反比例函数图象上点的坐标特点,以及勾股定理的应用,关键是表示出A、B 两点的坐标12已知二次函数y=ax2+bx+c (a 0)的图象如图所示,有下列结论: abc0; b24ac0; 3a+

23、c0; 16a+4b+c0其中正确结论的个数是()精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 21 页 - - - - - - - - - - A1 个 B2 个 C3 个 D4 个【考点】 二次函数图象与系数的关系【分析】 由抛物线的开口方向,抛物线与y 轴交点的位置、对称轴即可确定a、b、c 的符号,即得abc 的符号;由抛物线与x轴有两个交点判断即可;由抛物线的对称轴为直线x=1,可得 b=2a,然后把 x=1 代入方程即可求得相应的y 的符号;根据对称轴和图可知, 抛物线与 x

24、轴的另一交点在3 和 4 之间,所以当 x=4 时, y0, 即可得 16a+4b+c0【解答】 解:由开口向上,可得a0,又由抛物线与y 轴交于负半轴,可得c0,然后由对称轴在y 轴右侧,得到b 与 a异号,则可得b0,abc0,故 错误;由抛物线与x 轴有两个交点,可得b24ac0,故 正确;由抛物线的对称轴为直线x=1,可得 b=2a,再由当 x=1 时 y0,即 ab+c0,3a+c0,故 正确;根据对称轴和图可知, 抛物线与 x 轴的另一交点在3 和 4 之间,所以当 x=4 时, y0, 即可得 16a+4b+c0,故 正确,故选: C【点评】 本题考查了二次函数图象与系数的关系二

25、次函数y=ax2+bx+c(a 0)系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定二、填空题:本大题共4 小题,每题3 分,共 12 分,请将答案填入答题卡指定位置上13方程 4x(2x+1 )=3(2x+1 )的解为x1= ,x2=【考点】 解一元二次方程-因式分解法【专题】 计算题【分析】 先进行移项得到4x(2x+1 )3(2x+1)=0,再把方程左边分解得到(2x+1) (4x3)=0,则方程转化为2x+1=0 或 4x3=0,然后解两个一次方程即可【解答】 解:移项得4x(2x+1) 3( 2x+1)=0,(2x+1 ) ( 4x3)=0,2x+1

26、=0 或 4x3=0,x1= ,x2= 故答案为 x1= ,x2= 【点评】 本题考查了解一元二次方程因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解, 这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解14如图, AOP= BOP=15 ,PCOA ,PDOA,若 PC=4,则 PD 的长为2精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 11 页,共 21 页 - - - - - - - - - - 【考点】 含 30 度角的直角三角形【专题】 计算题【分析】 过

27、 P 作 PE 垂直与 OB,由AOP= BOP,PD 垂直于 OA,利用角平分线定理得到PE=PD,由 PC 与 OA 平行,根据两直线平行得到一对内错角相等,又OP 为角平分线得到一对角相等,等量代换可得 COP=CPO,又 ECP 为三角形 COP 的外角,利用三角形外角的性质求出ECP=30 ,在直角三角形ECP 中,由 30 角所对的直角边等于斜边的一半,由斜边PC 的长求出 PE 的长,即为PD的长【解答】 解:过 P作 PEOB,交 OB 与点 E,AOP=BOP,PDOA,PEOB,PD=PE,PCOA ,CPO=POD,又AOP= BOP=15 ,CPO=BOP=15 ,又E

28、CP 为OCP 的外角,ECP=COP+CPO=30 ,在直角三角形CEP 中, ECP=30 , PC=4,PE= PC=2,则 PD=PE=2故答案为: 2【点评】 此题考查了含30 角直角三角形的性质,角平分线定理,平行线的性质,以及三角形的外角性质,熟练掌握性质及定理是解本题的关键同时注意辅助线的作法15如图,直线y= x1 与坐标轴交于A、B 两点,点 P 是曲线 y= (x0)上一点,若PAB 是以APB=90 的等腰三角形,则k=4【考点】 全等三角形的判定与性质;反比例函数图象上点的坐标特征精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名

29、师归纳 - - - - - - - - - -第 12 页,共 21 页 - - - - - - - - - - 【分析】 根据全等三角形的判定与性质,可得AD=BC,DP=CP,根据AD=BC,可得关于x的方程,根据解方程,可得x,根据待定系数法,可得函数解析式【解答】 解:作 PCx 轴,PDy 轴,如图,COD= ODM= OCM=90 ,四边形 OCPD 是矩形在APD 和BPC 中,APDBPC(AAS) ,AD=BC ,DP=CP,四边形 OCPD 是正方形,OC=OD ,OA=1 ,OB=5 ,设 OD=x ,则 AD=x+1 ,BC=5x,AD=BC ,x+1=5 x,解得:

30、x=2,即 OD=OC=2 ,点 P 的坐标为:(2,2) ,k=xy=4 ,故答案为: 4【点评】 本题考查了全等三角形的判定与性质,利用全等三角形的判定与性质得出AD=BC 是解题关键,又利用了待定系数法求函数解析式16如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即 n=20)根时,需要的火柴棍总数为630根【考点】 规律型:图形的变化类【专题】 压轴题;规律型【分析】 关键是通过归纳与总结,得到其中的规律,按规律求解【解答】 解: n=1 时,有 1 个三角形,需要火柴的根数为:3 1;精品资料 - - - 欢迎下载 - - - - - - - - - -

31、- 欢迎下载 名师归纳 - - - - - - - - - -第 13 页,共 21 页 - - - - - - - - - - n=2时,有3个三角形,需要火柴的根数为:3(1+2) ;n=3 时,有 6 个三角形,需要火柴的根数为:3 (1+2+3) ; ;n=20 时,需要火柴的根数为:3 (1+2+3+4+ +20)=630故答案为: 630【点评】 此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形三、解答题:共52 分17计算: |tan60 2|+0()2+【考点】 实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值【专题】 计算题;实数【分析】 原式

32、第一项利用特殊角的三角函数值及绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用二次根式性质化简即可得到结果【解答】 解:原式 =2+19+3 =3【点评】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键18如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后放在桌面上(1)小红从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明从这四张纸牌中随机摸出两张,用树状图或表格法,求摸出的两张牌面图形都是中心对称图形的概率【考点】 列表法与树状图法【分析】(1)直接根据概率公式计算即可(

33、2)首先画出树状图或列表列出可能的情况,再根据中心对称图形的概念可知,当摸出圆和平行四边形时为中心对称图形,除以总情况数即可【解答】 解: ( 1)共有 4 张牌,正面是中心对称图形的情况有2 种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:A B C D A (A,B)(A,C)(A,D)B (B,A)(B,C)(B,D)C (C,A)(C,B)(C,D)D (D,A)(D,B)(D,C)共产生 16 种结果,每种结果出现的可能性相同,其中两张牌都是中心对称图形的有2 种,即( B,C) (C,B)P(两张都是中心对称图形)= 精品资料 - - - 欢迎下载 - - - - -

34、- - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 14 页,共 21 页 - - - - - - - - - - 【点评】 此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点用到的知识点为:概率=所求情况数与总情况数之比19某中学 2016 届九年级学生开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度,如图,他们先在点C 测得教学楼AB 的顶点 A 的仰

35、角为 30 ,然后向教学楼前进20 米到达点D,又测得点 A 的仰角为 45 ,请根据这些数据,求这幢教学楼的高度(最后结果精确到1 米,参考数据 1.732)【考点】 解直角三角形的应用-仰角俯角问题【分析】 首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB 及 CD=BC BD=60 构造方程关系式,进而可解,即可求出答案【解答】 解:由已知,可得:ACB=30 ,ADB=45 ,在 RtABD 中, BD=AB 又在 RtABC 中,tan30 =,=,即 BC=AB BC=CD+BD ,AB=CD+AB ,即(1)AB=20 ,AB=10 (+1) 27 米答:教学楼

36、的高度为27 米【点评】 本题考查了仰角与俯角的应用,要求学生能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形20如图,在矩形ABCD 中, E 是 BC 边上的点, AE=BC ,DFAE,垂足为 F,连接 DE(1)求证: AB=DF ;(2)若 AD=10 ,AB=6 ,求 tanEDF 的值【考点】 矩形的性质;全等三角形的判定与性质;锐角三角函数的定义【专题】 几何综合题;压轴题【分析】(1)根据矩形的对边平行且相等得到AD=BC=AE , DAF= EAB 再结合一对直角相等即可证明 ABE DFA;然后根据全等三角形的对应边相等证明AB=DF ;精品资料 - - -

37、欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 15 页,共 21 页 - - - - - - - - - - (2)根据全等三角形的对应边相等以及勾股定理,可以求得DF,EF的长;再根据勾股定理求得DE 的长,运用三角函数定义求解【解答】(1)证明:在矩形ABCD 中,BC=AD ,AD BC, B=90 ,DAF= AEB DFAE,AE=BC ,AFD=90 ,AE=AD ABE DFA;AB=DF ;(2)解:由( 1)知 ABE DFAAB=DF=6 在 RtADF 中, AF=,EF=AE AF=AD AF=2 t

38、anEDF= 【点评】 本题综合考查了矩形的性质、全等三角形的判定与性质及锐角三角函数的定义熟练运用矩形的性质和判定,能够找到证明全等三角形的有关条件;运用全等三角形的性质求得三角形中的边,再根据锐角三角函数的概念求解21如图,已知A( 4,n) ,B(2,4)是反比例函数y= 的图象和一次函数y=ax+b 的图象的两个交点(1)求反比例函数和一次函数的解析式;(2)求 AOB 的面积;(3)根据图象直接写出不等式ax+b0 的解集【考点】 反比例函数与一次函数的交点问题【分析】(1)先把 B(2, 4)代入 y= 得到 k=8,再把 A( 4,n)代入 y=可求出 n=2,然后利用待定系数法

39、确定一次函数的解析式;(2)先求出直线y=x2 与 x 轴交点 C 的坐标,然后利用SAOB=SAOC+SBOC进行计算;(3) 观察函数图象得到当x 4 或 0 x2 时,一次函数的图象在反比例函数图象上方,即使 ax+b 0【解答】 解: ( 1)把 B(2, 4)代入 y= 的得 m=2 ( 4)=8,精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 16 页,共 21 页 - - - - - - - - - - 所以反比例函数解析式为y=,把 A( 4,n)代入 y= 得 4n=8,解得 n=2,把

40、 A( 4,2)和 B(2,4)代入 y=kx+b 得,解得所以一次函数的解析式为y=x2;(2)直线 y=x2 与 x 轴交于点 C(2,0) ,SAOB=SAOC+SBOC= 2 2+ 2 4=6;(3)不等式 kx+b 0 的解集为 4x0 或 x2;故答案为: 4x0或 x2【点评】 本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式也考查了观察函数图象的能力以及用待定系数法确定一次函数的解析式22某宾馆客房部有60 个房间供游客居住,当每个房间的定价为每天200 元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10 元,就会有1

41、个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20 元的各种费用设每个房间的定价增加x 元,每天的入住量为y 个,客房部每天的利润为w 元(1)求 y 与 x 的函数关系式;(2)求 w 与 x 的函数关系式,并求客房部每天的最大利润是多少?(3)当 x 为何值时,客房部每天的利润不低于14000 元?【考点】 二次函数的应用【分析】(1)根据题意可得房间每天的入住量=60个房间每个房间每天的定价增加的钱数 10;(2)支出费用为20 (60) ,则利润 w=(60) 20 (60) ,利用配方法化简可求最大值;(3)根据题意列方程即可得到结论【解答】 解: ( 1)由题意得: y=

42、60;精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 17 页,共 21 页 - - - - - - - - - - (2)w=(60) 20 (60)=x2+42x+10800 w=x2+42x+10800= (x210)2+15210,当 x=210 时,w 有最大值,且最大值是15210 元;(3)当 W=14000 时,即(x210)2+15210=14000 ,解得: x1=100,x2=320,故当 100 x 320 时,每天的利润不低于14000 元【点评】 此题考查二次函数的应用,求二次

43、函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法本题主要考查的是二次函数的应用,难度一般23如图 ,已知二次函数y=x2+2x+3 的图象与 x 轴交于点A、B,与 y 轴交于点C(1)求 ABC 的面积(2)点 M 在 OB 边上以每秒1 个单位的速度从点O 向点 B 运动, 点 N 在 BC 边上以每秒个单位得速度从点B 向点 C 运动,两个点同时开始运动,同时停止设运动的时间为t 秒,试求当t 为何值时,以 B、M、N 为顶点的三角形与BOC 相似?(3)如图 ,点 P 为抛物线上的动点,点Q 为对称轴上的动点,是否存在点P、Q,使得以 P、Q、C、B

44、 为顶点的四边形是平行四变形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由【考点】 二次函数综合题【分析】(1)根据自变量与函数值的对应关系,可得A、B、C 的坐标,根据三角形的面积公式,可得答案;(2)根据两角相等的两个三角形相似,可得BMN 与 BOC 的关系,根据相似三角形的性质,可得关于 t 的方程,根据解方程,可得答案;(3)根据对边平行且相等的四边形是平行四边形,可得 BQ=PC 或 BC=PQ ;根据 BQPC,BQ=PC,可得 P 点坐标;根据PQ=BC,可得关于a 的方程,根据解方程,可得a 的值,根据自变量与函数值的对应关系,可得P 点坐标【解答】 解:

45、(1)当x=0时,y=3,即C(0,3) ,当 y=0 时, x2+2x+3=0 ,解得 x=1,x=3,即 A( 1,0) ,B(3,0) ;SABC= AB?OC= 3( 1) 3=6;精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 18 页,共 21 页 - - - - - - - - - - (2)若 BMN=90 ,如图 1:,BM= (3 t) , BN=t,BC=3,BMN BOC,=,即=t=(3t) ,解得 t= ;若BNM=90 时,如图2:,BM= (3 t) , BN=t,BC=3

46、,BMN BCO,=,即=,3t=t,解得 t=1;综上所述: t=1 或 t=;精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 19 页,共 21 页 - - - - - - - - - - (3)如图 3:,若 CB 为对角线,即CPQB,CP1=Q1B=31=2,y=yC=3,P1(2,3) ;CB 为边,即 CBPQ,CB=PQ,设 P(a,b) ,D(1,b) ,Q(1,a+b1) PQ=CB,即( a1)2+(1a)2=18,化简,得a22a8=0解得 a=2 或 a=4当 a=2 时,b=(

47、 2)2+2 (2)+3=5,即 P2( 2,5) ;当 a=4 时, b=42+2 4+3=5,即P3(4,5) ;综上所述: P1(2,3) ,P2( 2, 5) ,P3(4,5) 【点评】 本题考查了二次函数综合题,(1)利用自变量与函数值的对应关系得出A、B、C 的坐标是解题关键;(2)利用相似三角形的性质得出关于t 的方程是解题关键,要分类讨论,以防遗漏;( 3)利用平行四边形的对边相等得出关于a 的方程是解题关键,要分类讨论,以防遗漏精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 20 页,共 21 页 - - - - - - - - - - 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 21 页,共 21 页 - - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁