三角函数求值域专题.doc

上传人:飞****2 文档编号:14540026 上传时间:2022-05-05 格式:DOC 页数:8 大小:448.50KB
返回 下载 相关 举报
三角函数求值域专题.doc_第1页
第1页 / 共8页
三角函数求值域专题.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《三角函数求值域专题.doc》由会员分享,可在线阅读,更多相关《三角函数求值域专题.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上 三角函数求值域专题 求三角函数值域及最值的常用方法:(1) 一次函数型:或利用为:, 利用函数的有界性或单调性求解;化为一个角的同名三角函数形式, (1):, (2) (3).函数在区间上的最小值为 1 (4)函数且的值域是_(2)二次函数型:化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解; 二倍角公式的应用:如: (1) (2)函数的最大值等于 (3).当时,函数的最小值为 4 (4).已知k4,则函数ycos2xk(cosx1)的最小值是 1 (5).若,则的最大值与最小值之和为_2_(3) 借助直线的斜率的关系用数形结合求解;型如型。

2、此类型最值问题可考虑如下几种解法:转化为再利用辅助角公式求其最值;利用万能公式求解;采用数形结合法(转化为斜率问题)求最值。例1:求函数的值域。解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx, sinx)与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q点的直线与单位圆相切时得斜率便是函数得最值,由几何知识,易求得过Q的两切线得斜率分别为、。结合图形可知,此函数的值域是。解法2:将函数变形为,由,解得:,故值域是解法3:利用万能公式求解:由万能公式,代入得到则有知:当,则,满足条件;当,由,故所求函数的值域是。解法4:利用重要不等式求解:由万能公式,代入得

3、到当时,则,满足条件;当时,如果t 0,则,此时即有;如果t 0,则,此时有。综上:此函数的值域是。例2.求函数的最小值解法一:原式可化为,得,即,故,解得或(舍),所以的最小值为解法二:表示的是点与连线的斜率,其中点B在左半圆上,由图像知,当AB与半圆相切时,最小,此时,所以的最小值为(4)换元法代数换元法代换: 令:再用配方、 例题:求函数的最大值 解:设,则,则,当时,有最大值为 (5)降幂法型如型。此类型可利用倍角公式、降幂公式进行降次、整理为再利用辅助角公式求出最值。例1:求函数的最值,并求取得最值时x的值。解:由降幂公式和倍角公式,得 , ,的最小值为,此时,无最大值。例2. 已知

4、函数, (I)求的最大值和最小值; (II)若不等式在上恒成立,求实数的取值范围解:() 又,即, (), 且,即的取值范围是(5)典型应用题ABORSPQ扇形的半径为1,中心角为,是扇形的内接矩形,问在怎样的位置时,矩形的面积最大,并求出最大值解:连接,设,则,所以当时,在圆弧中心位置, 类型6:条件最值问题(不要忘了条件自身的约束)。 例1. 已知,求的最大值与最小值解:(1)由已知得:,则,当时,有最小值;当时,有最小值例2:已知,求的取值范围。解:, 。sin=0时,; 时, 。例3 :求函数的最大值和最小值,并指出当x分别为何值时取到最大值和最小值。解:定义域为0x1,可设且,即当或

5、,即 =0或(此时x=1或x=0),y=1;当,即时,(此时),当x=0或x=1时,y有最小值1;当时,y有最大值。【反馈演练】1 函数的最小值等于_1_2已知函数,直线和它们分别交于M,N,则_3当时,函数的最小值是_4 _4函数的最大值为_,最小值为_.5函数的值域为 . 6已知函数,则的值域是 .7已知函数在区间上的最小值是,则的最小值等 于_8(1)已知,函数的最大值是_.(2)已知,函数的最小值是_3_.9在OAB中,O为坐标原点,则当OAB的面积达最大值时,_10已知函数()求函数的最小正周期;()求函数在区间上的最小值和最大值解:()因此,函数的最小正周期为()因为在区间上为增函

6、数,在区间上为减函数,又,故函数在区间上的最大值为,最小值为yxO解法二:作函数在长度为一个周期的区间上的图象如下:由图象得函数在区间上的最大值为,最小值为11若函数的最大值为,试确定常数a的值.解:因为的最大值为的最大值为1,则所以12已知函数(1)若求使为正值的的集合;(2)若关于的方程在内有实根,求实数的取值范围.解:(1) 又 (2)当时,则, 方程有实根,得 【高考赏析】(1)设函数(其中),且的图象在轴右侧的第一个最高点的横坐标为。 (I)求的值。(II)如果在区间上的最小值为,求的值。 2.已知函数f(x)=sin(2x)+2sin2(x) (xR)()求函数f(x)的最小正周期 ; (2)求使函数f(x)取得最大值的x的集合.解:() f(x)=sin(2x)+1cos2(x)= 2sin2(x) cos2(x)+1 =2sin2(x)+1 = 2sin(2x) +1 T= ()当f(x)取最大值时, sin(2x)=1,有 2x =2k+ 即x=k+ (kZ) 所求x的集合为xR|x= k+ , (kZ)专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁