《上海地区高一数学知识点归纳(共17页).doc》由会员分享,可在线阅读,更多相关《上海地区高一数学知识点归纳(共17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上上海高一数学知识点归纳第一章 集合与命题1.1集合与元素 (1)集合的概念 常把能够确切指定的一些对象看作一个整体,这个整体就叫做集合. (2)集合中的元素 集合中的各个对象叫做这个集合的元素,集合中的元素具有确定性、互异性和无序性. (3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一. (4)集合的表示法 自然语言法:用文字叙述的形式来描述集合.列举法:把集合中的元素一一列举出来,写在大括号内表示集合.描述法:|具有的性质,其中为集合的代表元素.图示法:用数轴或韦恩图来表示集合. (5)集合的分类 含有有限个元素的集合叫做有限集. 含有无限个元素的集合叫
2、做无限集. 不含有任何元素的集合叫做空集(). (6)常用数集及其记法 表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集. 1.2集合与集合名称记号意义性质示意图子集(或A中的任一元素都属于B(1)AA(2)(3)若且,则(4)若且,则或真子集AB(或BA),且B中至少有一元素不属于A(1)(A为非空子集)(2)若且,则集合相等A中的任一元素都属于B,B中的任一元素都属于A(1)AB(2)BA 重要结论:已知集合有个元素,则它有个子集,它有个真子集,它个非空子集,它有非空真子集. 1.3集合的基本运算 交集、并集、补集名称记号意义性质示意图交集且(1)(2)(3) 并集或(1
3、)(2)(3) 补集 1.4命题的形式及等价关系(1)命题 用语言、符号或式子表达的,可以判断真假的陈述句.“若,则”形式的命题中的称为命题的条件,称为命题的结论. (2)逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。若原命题为“若,则”,它的逆命题为“若,则”. (3)否命题 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若,则”,则它的否命题为“若,则”. (4)逆否
4、命题 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否命题。若原命题为“若,则”,则它的否命题为“若,则”。 1.5充分条件与必要条件 充分条件、必要条件、充要条件 如果,那么P是Q的充分条件,Q是P的必要条件。 如果,那么P是Q的充要条件。也就是说,命题P与命题Q是等价命题。 1.6命题的运算 命题的非运算 命题的且运算 命题的或运算 1.7抽屉原则与平均数原则第二章 不等式2.1不等式的基本性质1. 如果2. 如果3. 如果4. 如果5. 如果6. 如果,那么7. 如果,那么.8.
5、如果,那么2.2一元二次不等式的解法这个知识点很重要,可根据与0的关系来求解,注意解的区间的表示,不等式组也是一样。解分式不等式的方法就是将它转化为解整式不等式。求一元二次不等式解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边. 区间的概念及表示法 设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做注意:对于集合与区间,前者可以大于或等于,
6、而后者必须,(前者可以不成立,为空集;而后者必须成立)2.3其他不等式的解法 (1)分式不等式的解法先移项通分标准化,则(时同理)规律:把分式不等式等价转化为整式不等式求解. (2)含绝对值不等式的解法不等式解集或把看成一个整体,化成,型不等式来求解两个基本不等式:1.对任意实数有当且仅当时等号成立。2.对任意正数有,当且仅当时等号成立。我们把分别叫做正数的算术平均数和几何平均数。 (3)无理不等式的解法方法:将无理不等式转化为有理不等式求解, (4)高次不等式的解法方法:穿根法分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.2.4基本不等式及
7、其应用1. ,(当且仅当时取号). 2. ,(当且仅当时取到等号).用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.2.5不等式的证明常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法: 舍去或加上一些项,如 将分子或分母放大(缩小),如 第三章函数的基本性质3.1函数的概念 在某个变化过程中有两个变量,如果对于在某个实数集合D内的每一个确定的值,按照某个对应法则,都有唯一确定的实数值与它对应,那么就是的函数.记作: 是自变量 D是定义域 与对应的值叫做函数值
8、 函数值的集合是值域3.2函数关系的建立 函数的三要素:定义域、值域和对应法则 表示函数的方法,常用的有解析法、列表法、图象法三种 解析法:就是用数学表达式表示两个变量之间的对应关系 列表法:就是列出表格来表示两个变量之间的对应关系 图象法:就是用图象表示两个变量之间的对应关系3.3函数的运算 函数的和:3.4函数的性质 (1)函数的奇偶性定义及判定方法函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做奇函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意
9、一个x,都有f(x)=f(x),那么函数f(x)叫做偶函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)若函数为奇函数,且在处有定义,则 (2)函数的单调性定义及判定方法函数的性 质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1 x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2),那么就说f(x)在这个区间
10、上是减函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数 (3)函数的最值 一般地,设函数的定义域为,如果存在实数满足: (1)对于任意的,都有; (2)存在,使得那么,我们称是函数的最大值,记作一般地,设函数的定义域为,如果存在实数满足:(1) 对于任意的,都有;(2) (2)存在,使得那么,我们称是函数的最小值,记作(4)函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数
11、的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点3、函数零点的求法:求函数的零点: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的第四章 幂函数、指数函数和对数函数4.1幂函数的性质 (1)幂函数的定义 一般地,函数叫做幂函数,其中为自变量,是常数(2) 幂函数的图象 (3)幂函数的性质 图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只
12、分布在第一象限 过定点:所有的幂函数在都有定义,并且图象都通过点 单调性:如果,则幂函数的图象过原点,并且在上为增函数如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴 奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数4.2指数函数的图像与性质函数名称指数函数定义0101函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低(趋势)4.3对数概念及其运算(1) 对数的定义 若,则叫做以为底的对数,记作,其中叫做底数,叫做真数负数和零
13、没有对数对数式与指数式的互化:(2)几个重要的对数恒等式,(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中)(4)对数的运算性质 如果,那么加法: 减法: 数乘: 换底公式:4.4反函数的概念 (1)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成(2)反函数的求法确定反函数的定义域,即原函数的值域;从原函数式中反解出;将改写成,并注明反函数的定义域 反函数的性质: 原函数与反函数的图象关于直线对称函数的定义域、值域分别是其反函数的值域、定义域
14、若在原函数的图象上,则在反函数的图象上 一般地,函数要有反函数则它必须为单调函数4.5对数函数的图像与性质函数名称对数函数定义函数且叫做对数函数图象0101定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高4.6简单的指数方程指数方程:我们把指数里含有未知数的方程叫做指数方程. 1.注意定义域 2.熟练使用指数对数运算公式 3.熟练运用函数性质,留意换元法4.7简单的对数方程对数方程:在对数符号后面含有未知数的方程叫做对数方程.第五章 三角比5.1任意角及其度量(1)角的分类
15、 1、 正角:按逆时针方向旋转形成的角 负角:按顺时针方向旋转形成的角 零角:不作任何旋转形成的角 2、角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 如果角的终边落在坐标轴上,则也可以称为轴线角. 终边在轴上的角的集合为 终边在轴上的角的集合为 终边在坐标轴上的角的集合为3、 与角终边相同的角的集合为(2)角的弧度制1、长度等于半径长的弧所对的圆心角叫做弧度2、半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是3、弧度制与角度制的换算公式:,5.2任意角的三角比1、三角比定
16、义设角a是一个任意角,将角a置于平面直角坐标系中,角a的顶点与原点O重合,a的始边与x轴的正半轴重合,在a的终边上任取(异于原点的)一点P(x,y),有点P到原点的距离为: 2、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正3、单位圆:圆心在坐标原点,半径为1的圆(解决任意角,三角比问题的利器).4、三角函数线:,Pvx y A O M T 说明:三角函数线是有向线段(向量),既有长度,又有方向,方向的正负与对应 的三角比值保持一致. (1)正弦线:无论是第几象限角,过的终边与单位圆的交点P作x轴的垂线,交x轴于M,有向线段MP的符号与点P的纵坐标
17、y的符号一致,长度等于y所以有=我们把有向线段叫做角的正弦线,正弦线是角的正弦值的几何形式 (2)余弦线:有向线段叫做的余弦线. (3)正切线:过A(1,0)点作单位圆的切线(x轴的垂线),设的终边或其反向延长线与这条切线交于T点,那么有向线段叫做角的正切线.5.2任意角的三角比5.3同角三角比的关系和诱导公式同角三角函数的基本关系式;.(3) 倒数关系:,5.4两角和与差的余弦,正弦与正切; (); (5.5二倍角的正弦、余弦和正切公式 升幂公式 降幂公式, 5.6正弦定理,余弦定理和解斜三角形1、正弦定理:在中,、分别为角、的对边,则有(为的外接圆的半径)2、正弦定理的变形公式:,;,;3
18、、三角形面积公式:4、余弦定理:在中,有,推论:第六章 三角函数6.1及6.2正弦函数与余弦函数,正切,(余切)的图像与性质函数性质 y=cotx图象定义域值域最值当时,;当 时,当时, ;当时,既无最大值也无最小值既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴对称中心无对称轴6.3函数的性质振幅:;周期:;频率:;相位:;初相:函数,当时,取得最小值为 ;当时,取得最大值为,则,6.4反三角函数名称函数式定义域值域奇偶性单调性反正弦函数增奇函数增函数反余弦函数减非奇非偶减函数反正切函数R 增奇函数增函数反余切函数R 减非奇非偶减函数6.5最简单的三角方程方程方程的解集专心-专注-专业