《2016年江苏省苏州市中考数学试卷(共35页).doc》由会员分享,可在线阅读,更多相关《2016年江苏省苏州市中考数学试卷(共35页).doc(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1(3分)的倒数是()ABCD2(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A0.7103B7103C7104D71053(3分)下列运算结果正确的是()Aa+2b=3abB3a22a2=1Ca2a4=a8D(a2b)3(a3b)2=b4(3分)一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频率是()A0.1B0.2C0.3D0.45(3分)如图,直线ab,直线l与a、b分别相交于A、B两点,过点A
2、作直线l的垂线交直线b于点C,若1=58,则2的度数为()A58B42C32D286(3分)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k0)的图象上,则y1、y2的大小关系为()Ay1y2By1y2Cy1=y2D无法确定7(3分)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)1520253035户数36795则这30户家庭该用用水量的众数和中位数分别是()A25,27B25,25C30,27D30,25
3、8(3分)如图,长4m的楼梯AB的倾斜角ABD为60,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角ACD为45,则调整后的楼梯AC的长为()A2mB2mC(22)mD(22)m9(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当CDE的周长最小时,点E的坐标为()A(3,1)B(3,)C(3,)D(3,2)10(3分)如图,在四边形ABCD中,ABC=90,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF若四边形ABCD的面积为6,则BEF的面积为()A2BCD3二、填空题(共8小题,每小题3分,满分24分)
4、11(3分)分解因式:x21= 12(3分)当x= 时,分式的值为013(3分)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是 运动员(填“甲”或“乙”)14(3分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了
5、部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是 度15(3分)不等式组的最大整数解是 16(3分)如图,AB是O的直径,AC是O的弦,过点C的切线交AB的延长线于点D,若A=D,CD=3,则图中阴影部分的面积为 17(3分)如图,在ABC中,AB=10,B=60,点D、E分别在AB、BC上,且BD=BE=4,将BDE沿DE所在直线折叠得到BDE(点B在四边形ADEC内),连接AB,则AB的长为 18(3分)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为
6、D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC当BP所在直线与EC所在直线第一次垂直时,点P的坐标为 三、解答题(共10小题,满分76分)19(5分)计算:()2+|3|(+)020(5分)解不等式2x1,并把它的解集在数轴上表示出来21(6分)先化简,再求值:(1),其中x=22(6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字1、0、2,它们除了数字不同外,其他
7、都完全相同(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率24(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求ADE的周长25(8分)如图,一次函数y=kx+b的图象与x轴交于
8、点A,与反比例函数y=(x0)的图象交于点B(2,n),过点B作BCx轴于点C,点P(3n4,1)是该反比例函数图象上的一点,且PBC=ABC,求反比例函数和一次函数的表达式26(10分)如图,AB是O的直径,D、E为O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交O于点F,连接AE、DE、DF(1)证明:E=C;(2)若E=55,求BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EGED的值27(10分)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQBD交BC
9、于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0t)(1)如图1,连接DQ平分BDC时,t的值为 ;(2)如图2,连接CM,若CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:证明:在运动过程中,点O始终在QM所在直线的左侧;如图3,在运动过程中,当QM与O相切时,求t的值;并判断此时PM与O是否也相切?说明理由28(10分)如图,直线l:y=3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax22ax
10、+a+4(a0)经过点B(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M写出点M的坐标;将直线l绕点A按顺时针方向旋转得到直线l,当直线l与直线AM重合时停止旋转,在旋转过程中,直线l与线段BM交于点C,设点B、M到直线l的距离分别为d1、d2,当d1+d2最大时,求直线l旋转的角度(即BAC的度数)2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分
11、)1(3分)的倒数是()ABCD【分析】直接根据倒数的定义进行解答即可【解答】解:=1,的倒数是故选A【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数2(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A0.7103B7103C7104D7105【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【解答】解:0.0007=7104,故选:C【点评】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a
12、|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3(3分)下列运算结果正确的是()Aa+2b=3abB3a22a2=1Ca2a4=a8D(a2b)3(a3b)2=b【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案【解答】解:A、a+2b,无法计算,故此选项错误;B、3a22a2=a2,故此选项错误;C、a2a4=a6,故此选项错误;D、(a2b)3(a3b)2=b,故此选项正确;故选:D【点评】此题主要考查了同底数幂的乘法运算以及合并同类项、积的乘方运算等知识,正确把握相关定义是解题关键4(3分)一次数学测试后,某班40名学生的成绩被分为
13、5组,第14组的频数分别为12、10、6、8,则第5组的频率是()A0.1B0.2C0.3D0.4【分析】根据第14组的频数,求出第5组的频数,即可确定出其频率【解答】解:根据题意得:40(12+10+6+8)=4036=4,则第5组的频率为440=0.1,故选A【点评】此题考查了频数与频率,弄清题中的数据是解本题的关键5(3分)如图,直线ab,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若1=58,则2的度数为()A58B42C32D28【分析】根据平行线的性质得出ACB=2,根据三角形内角和定理求出即可【解答】解:直线ab,ACB=2,ACBA,BAC=90,2
14、=ACB=1801BAC=1809058=32,故选C【点评】本题考查了对平行线的性质和三角形内角和定理的应用,注意:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补6(3分)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k0)的图象上,则y1、y2的大小关系为()Ay1y2By1y2Cy1=y2D无法确定【分析】直接利用反比例函数的增减性分析得出答案【解答】解:点A(2,y1)、B(4,y2)都在反比例函数y=(k0)的图象上,每个象限内,y随x的增大而增大,y1y2,故选:B【点评】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题
15、关键7(3分)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)1520253035户数36795则这30户家庭该用用水量的众数和中位数分别是()A25,27B25,25C30,27D30,25【分析】根据众数、中位数的定义即可解决问题【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D【点评】本题考查众数、中位数的定义,解题
16、的关键是记住众数、中位数的定义,属于基础题,中考常考题型8(3分)如图,长4m的楼梯AB的倾斜角ABD为60,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角ACD为45,则调整后的楼梯AC的长为()A2mB2mC(22)mD(22)m【分析】先在RtABD中利用正弦的定义计算出AD,然后在RtACD中利用正弦的定义计算AC即可【解答】解:在RtABD中,sinABD=,AD=4sin60=2(m),在RtACD中,sinACD=,AC=2(m)故选B【点评】本题考查了解直角三角形的应用坡度坡角:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用
17、i表示,常写成i=1:m的形式把坡面与水平面的夹角叫做坡角,坡度i与坡角之间的关系为:i=tan9(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当CDE的周长最小时,点E的坐标为()A(3,1)B(3,)C(3,)D(3,2)【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE的周长最小D(,0),A(3,0),H(,0),直线CH解析式为y=x+4,
18、x=3时,y=,点E坐标(3,)故选:B【点评】本题考查矩形的性质、坐标与图形的性质、轴对称最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型10(3分)如图,在四边形ABCD中,ABC=90,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF若四边形ABCD的面积为6,则BEF的面积为()A2BCD3【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得ABC的面积,可得BG和ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是ACD以AC为底的高的一半,可得GH,易得BH,由中位
19、线的性质可得EF的长,利用三角形的面积公式可得结果【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,ABC=90,AB=BC=2,AC=4,ABC为等腰三角形,BHAC,ABG,BCG为等腰直角三角形,AG=BG=2SABC=ABBC=22=4,SADC=2,=2,DEFDAC,GH=BG=,BH=,又EF=AC=2,SBEF=EFBH=2=,故选C方法二:SBEF=S四边形ABCDSABESBCFSFED,易知SABE+SBCF=S四边形ABCD=3,SEDF=,SBEF=S四边形ABCDSABESBCFSFED=63=故选C【点评】此题主要考查了三角形面积的运算,作出恰当的
20、辅助线得到三角形的底和高是解答此题的关键二、填空题(共8小题,每小题3分,满分24分)11(3分)分解因式:x21=(x+1)(x1)【分析】利用平方差公式分解即可求得答案【解答】解:x21=(x+1)(x1)故答案为:(x+1)(x1)【点评】此题考查了平方差公式分解因式的知识题目比较简单,解题需细心12(3分)当x=2时,分式的值为0【分析】直接利用分式的值为0,则分子为0,进而求出答案【解答】解:分式的值为0,x2=0,解得:x=2故答案为:2【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键13(3分)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,
21、对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员(填“甲”或“乙”)【分析】根据方差的定义,方差越小数据越稳定【解答】解:因为S甲2=0.024S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙故答案为乙【点评】本题考查了方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定14(3分)某学校计划购买
22、一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72度【分析】根据文学类人数和所占百分比,求出总人数,然后用360乘以艺术类读物所占的百分比即可得出答案【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:9030%=300(人),则艺术类读物所在扇形的圆心
23、角是的圆心角是360=72;故答案为:72【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键15(3分)不等式组的最大整数解是3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可【解答】解:解不等式x+21,得:x1,解不等式2x18x,得:x3,则不等式组的解集为:1x3,则不等式组的最大整数解为3,故答案为:3【点评】本题考查不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了16(3
24、分)如图,AB是O的直径,AC是O的弦,过点C的切线交AB的延长线于点D,若A=D,CD=3,则图中阴影部分的面积为【分析】连接OC,可求得OCD和扇形OCB的面积,进而可求出图中阴影部分的面积【解答】解:连接OC,过点C的切线交AB的延长线于点D,OCCD,OCD=90,即D+COD=90,AO=CO,A=ACO,COD=2A,A=D,COD=2D,3D=90,D=30,COD=60CD=3,OC=3=,阴影部分的面积=3=,故答案为:【点评】本题主要考查切线的性质及扇形面积的计算,掌握过切点的半径与切线垂直是解题的关键求出D=30是解题的突破口17(3分)如图,在ABC中,AB=10,B=
25、60,点D、E分别在AB、BC上,且BD=BE=4,将BDE沿DE所在直线折叠得到BDE(点B在四边形ADEC内),连接AB,则AB的长为2【分析】作DFBE于点F,作BGAD于点G,首先根据有一个角为60的等腰三角形是等边三角形判定BDE是边长为4的等边三角形,从而根据翻折的性质得到BDE也是边长为4的等边三角形,从而GD=BF=2,然后根据勾股定理得到BG=2,然后再次利用勾股定理求得答案即可【解答】解:如图,作DFBE于点F,作BGAD于点G,B=60,BE=BD=4,BDE是边长为4的等边三角形,将BDE沿DE所在直线折叠得到BDE,BDE也是边长为4的等边三角形,GD=BF=2,BD
26、=4,BG=2,AB=10,AG=106=4,AB=2故答案为:2【点评】本题考查了翻折变换的性质,解题的关键是根据等边三角形的判定定理判定等边三角形,难度不大18(3分)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC当BP所在直线与EC所在直线第一次垂直时,点P的坐标为(1,)【分析】先根据题意求得CD和PE的长,再判定EPCPDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标【解答】解:点A、B的坐标分别为(8
27、,0),(0,2)BO=,AO=8由CDBO,C是AB的中点,可得BD=DO=BO=PE,CD=AO=4设DP=a,则CP=4a当BP所在直线与EC所在直线第一次垂直时,设BP与CE交于点F,则FCP=DBP又EPCP,PDBDEPC=PDB=90EPCPDB,即解得a1=1,a2=3(舍去)DP=1又PE=P(1,)故答案为:(1,)【点评】本题主要考查了坐标与图形性质,解决问题的关键是掌握平行线分线段成比例定理以及相似三角形的判定与性质解题时注意:有两个角对应相等的两个三角形相似三、解答题(共10小题,满分76分)19(5分)计算:()2+|3|(+)0【分析】直接利用二次根式的性质以及结
28、合绝对值、零指数幂的性质分析得出答案【解答】解:原式=5+31=7【点评】此题主要考查了实数运算,正确化简各数是解题关键20(5分)解不等式2x1,并把它的解集在数轴上表示出来【分析】根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来【解答】解:去分母,得:4x23x1,移项,得:4x3x21,合并同类项,得:x1,将不等式解集表示在数轴上如图:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变21(6分)
29、先化简,再求值:(1),其中x=【分析】先括号内通分,然后计算除法,最后代入化简即可【解答】解:原式=,当x=时,原式=【点评】本题考查分式的化简求值,解题的关键熟练掌握分式的混合运算法则,注意运算顺序,属于基础题,中考常考题型22(6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【分析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆【点评】本
30、题主要考查了二元一次方程组,解决问题的关键是找出等量关系列出方程本题也可以运用一元一次方程进行解答23(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字1、0、2,它们除了数字不同外,其他都完全相同(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率【分析】(1)直接利用概率公式求解;(2)先画树
31、状图展示所有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,然后根据概率公式求解【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率=【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率24(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD
32、的垂线交BA的延长线于点E(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求ADE的周长【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可【解答】(1)证明:四边形ABCD是菱形,ABCD,ACBD,AECD,AOB=90,DEBD,即EDB=90,AOB=EDB,DEAC,四边形ACDE是平行四边形;(2)解:四边形ABCD是菱形,AC=8,BD=6,AO=4,DO=3,AD=CD=5,四边形ACDE是平行四边形,AE=CD=5,DE=AC=8,ADE的周长为AD+AE+DE=5+5+8=18【点评】此题考查平行四边形的性质和判
33、定问题,关键是根据平行四边形的判定解答即可25(8分)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x0)的图象交于点B(2,n),过点B作BCx轴于点C,点P(3n4,1)是该反比例函数图象上的一点,且PBC=ABC,求反比例函数和一次函数的表达式【分析】将点B(2,n)、P(3n4,1)代入反比例函数的解析式可求得m、n的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PDBC,垂足为D,并延长交AB与点P接下来证明BDPBDP,从而得到点P的坐标,最后将点P和点B的坐标代入一次函数的解析式即可求得一次函数的表达式【解答】解:点B(2,n)、P(3n4,1)
34、在反比例函数y=(x0)的图象上,解得:m=8,n=4反比例函数的表达式为y=m=8,n=4,点B(2,4),P(8,1)过点P作PDBC,垂足为D,并延长交AB与点P在BDP和BDP中,BDPBDPDP=DP=6点P(4,1)将点P(4,1),B(2,4)代入直线的解析式得:,解得:一次函数的表达式为y=x+3【点评】本题主要考查的是一次函数和反比例函数的综合应用,根据题意列出方程组是解题的关键26(10分)如图,AB是O的直径,D、E为O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交O于点F,连接AE、DE、DF(1)证明:E=C;(2)若E=55,求BDF的度数;
35、(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EGED的值【分析】(1)直接利用圆周角定理得出ADBC,再利用线段垂直平分线的性质得出AB=AC,即可得出E=C;(2)利用圆内接四边形的性质得出AFD=180E,进而得出BDF=C+CFD,即可得出答案;(3)根据cosB=,得出AB的长,即可求出AE的长,再判断AEGDEA,求出EGED的值【解答】(1)证明:连接AD,AB是O的直径,ADB=90,即ADBC,CD=BD,AD垂直平分BC,AB=AC,B=C,又B=E,E=C;(2)解:四边形AEDF是O的内接四边形,AFD=180E,又CFD=180AFD,CFD=E=5
36、5,又E=C=55,BDF=C+CFD=110;(3)解:连接OE,CFD=E=C,FD=CD=BD=4,在RtABD中,cosB=,BD=4,AB=6,E是的中点,AB是O的直径,AOE=90,AO=OE=3,AE=3,E是的中点,ADE=EAB,AEGDEA,=,即EGED=AE2=18【点评】此题主要考查了圆的综合题、圆周角定理以及相似三角形的判定与性质以及圆内接四边形的性质等知识,根据题意得出AE,AB的长是解题关键27(10分)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQBD交BC于点Q,以PQ为一边作
37、正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0t)(1)如图1,连接DQ平分BDC时,t的值为1;(2)如图2,连接CM,若CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:证明:在运动过程中,点O始终在QM所在直线的左侧;如图3,在运动过程中,当QM与O相切时,求t的值;并判断此时PM与O是否也相切?说明理由【分析】(1)先利用PBQCBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题(2)由QTMBCD,得=列出方程
38、即可解决(3)如图2中,延长QM交CD于E,求出DE、DO利用差值比较即可解决问题如图3中,由可知O只有在左侧与直线QM相切于点H,QM与CD交于点E由OHEBCD,得=,列出方程即可解决问题利用反证法证明直线PM不可能由O相切【解答】(1)解:如图1中,四边形ABCD是矩形,A=C=ADC=ABC=90,AB=CD=6AD=BC=8,BD=10,PQBD,BPQ=90=C,PBQ=DBC,PBQCBD,=,=,PQ=3t,BQ=5t,DQ平分BDC,QPDB,QCDC,QP=QC,3t=85t,t=1,故答案为:1(补充:直接利用角平分线的性质得到DP=DC=6,BP=4,从而t=1)(2)
39、解:如图2中,作MTBC于TMC=MQ,MTCQ,TC=TQ,由(1)可知TQ=(85t),QM=3t,MQBD,MQT=DBC,MTQ=BCD=90,QTMBCD,=,=,t=(s),t=s时,CMQ是以CQ为底的等腰三角形(3)证明:如图2中,延长QM交CD于E,EQBD,=,EC=(85t),ED=DCEC=6(85t)=t,DO=3t,DEDO=t3t=t0,点O在直线QM左侧解:如图3中,由可知O只有在左侧与直线QM相切于点H,QM与CD交于点EEC=(85t),DO=3t,OE=63t(85t)=t,OHMQ,OHE=90,HEO=CEQ,HOE=CQE=CBD,OHE=C=90,
40、OHEBCD,=,=,t=t=s时,O与直线QM相切连接PM,假设PM与O相切,则OMH=PMQ=22.5,在MH上取一点F,使得MF=FO,则FMO=FOM=22.5,OFH=FOH=45,OH=FH=,FO=FM=,MH=(+1),由=得到HE=,由=得到EQ=,MH=MQHEEQ=4=,(+1),矛盾,假设不成立直线PM与O不相切【点评】本题考查圆综合题、正方形的性质、相似三角形的判定和性质、切线的判定和性质、勾股定理、角平分线的性质等知识,解题的关键灵活运用这些知识解决问题,学会利用方程的思想思考问题,充分利用相似三角形的性质构建方程,在最后一个问题证明中利用了反证法,属于中考压轴题2
41、8(10分)如图,直线l:y=3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax22ax+a+4(a0)经过点B(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M写出点M的坐标;将直线l绕点A按顺时针方向旋转得到直线l,当直线l与直线AM重合时停止旋转,在旋转过程中,直线l与线段BM交于点C,设点B、M到直线l的距离分别为d1、d2,当d1+d2最大时,求直线l旋转的角度(即BAC的度数)【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)设M的坐标为(m,m2+2m+3),然后根据面积关系将ABM的面积进行转化;(3)由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;可将求d1+d2最大值转化为求AC的最小值【解答】解:(1)令x=0代入y=3x+3,y=3,B(0,3),把B(0,3)代入y=ax22ax+a+4,3=a+4,a=1,二次函数解析式为:y=x2+2x+3;(2)令y=0代入y=x2+2x+3,0=x2+2x+3,x=1或3,抛物线与x轴的交点横坐标为1和3,M在抛物线上,且在第一象限内,0m3,令y=0代入