《2014年江苏省苏州市中考数学试卷(共25页).doc》由会员分享,可在线阅读,更多相关《2014年江苏省苏州市中考数学试卷(共25页).doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2014年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1(3分)(2014苏州)(3)3的结果是()A9B0C9D62(3分)(2014苏州)已知和是对顶角,若=30,则的度数为()A30B60C70D1503(3分)(2014苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A1B3C4D54(3分)(2014苏州)若式子在实数范围内有意义,则x的取值范围是()Ax4Bx4Cx4Dx45(3分)(2014苏州)如图,一个圆形转盘被分成6个圆心角都为60的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()ABC
2、D6(3分)(2014苏州)如图,在ABC中,点D在BC上,AB=AD=DC,B=80,则C的度数为()A30B40C45D607(3分)(2014苏州)下列关于x的方程有实数根的是()Ax2x+1=0Bx2+x+1=0C(x1)(x+2)=0D(x1)2+1=08(3分)(2014苏州)二次函数y=ax2+bx1(a0)的图象经过点(1,1),则代数式1ab的值为()A3B1C2D59(3分)(2014苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60的方向,则该船航行的距离(即AB的长)为(
3、)A4kmB2kmC2kmD(+1)km10(3分)(2014苏州)如图,AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上将AOB绕点B按顺时针方向旋转一定角度后得AOB,点A的对应点A在x轴上,则点O的坐标为()A(,)B(,)C(,)D(,4)二、填空题(共8小题,每小题3分,共24分)11(3分)(2014苏州)的倒数是12(3分)(2014苏州)已知地球的表面积约为km2,数用科学记数法可表示为13(3分)(2014苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为14(3分)(2014苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并
4、且只能选修其中一门,为了了解各门课程的选修人数现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人15(3分)(2014苏州)如图,在ABC中,AB=AC=5,BC=8若BPC=BAC,则tanBPC=16(3分)(2014苏州)某地准备对一段长120m的河道进行清淤疏通若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值
5、为17(3分)(2014苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E若AEED=,则矩形ABCD的面积为18(3分)(2014苏州)如图,直线l与半径为4的O相切于点A,P是O上的一个动点(不与点A重合),过点P作PBl,垂足为B,连接PA设PA=x,PB=y,则(xy)的最大值是三、解答题(共11小题,共76分)19(5分)(2014苏州)计算:22+|1|20(5分)(2014苏州)解不等式组:21(5分)(2015东莞)先化简,再求值:(1+),其中x=122(6分)(2014苏州)解分式方程:+=323(6分)(2014苏州)如图,在RtABC中,A
6、CB=90,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90后得CE,连接EF(1)求证:BCDFCE;(2)若EFCD,求BDC的度数24(7分)(2014苏州)如图,已知函数y=x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a2),过点P作x轴的垂线,分别交函数y=x+b和y=x的图象于点C、D(1)求点A的坐标;(2)若OB=CD,求a的值25(7分)(2014苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画
7、树状图或列表)求A、C两个区域所涂颜色不相同的概率26(8分)(2014苏州)如图,已知函数y=(x0)的图象经过点A、B,点A的坐标为(1,2),过点A作ACy轴,AC=1(点C位于点A的下方),过点C作CDx轴,与函数的图象交于点D,过点B作BECD,垂足E在线段CD上,连接OC、OD(1)求OCD的面积;(2)当BE=AC时,求CE的长27(8分)(2014苏州)如图,已知O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF(1)若O的半径为3,DAB=120,求劣弧的长;(2)求证:BF=BD;(3
8、)设G是BD的中点,探索:在O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系28(9分)(2014苏州)如图,已知l1l2,O与l1,l2都相切,O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若O与矩形ABCD沿l1同时向右移动,O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图,连接OA、AC,则OAC的度数为;(2)如图,两个图形移动一段时间后,O到达O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长)
9、;(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d2时,求t的取值范围(解答时可以利用备用图画出相关示意图)29(10分)(2014苏州)如图,二次函数y=a(x22mx3m2)(其中a,m是常数,且a0,m0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,3),点D在二次函数的图象上,CDAB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分DAE(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三
10、角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由2014年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1(3分)(2014苏州)(3)3的结果是()A9B0C9D6【解答】解:原式=33=9,故选:A2(3分)(2014苏州)已知和是对顶角,若=30,则的度数为()A30B60C70D150【解答】解:和是对顶角,=30,根据对顶角相等可得=30故选:A3(3分)(2014苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A1B3C4D5【解答】解:这组数据中3出现的次数最多
11、,故众数为3故选:B4(3分)(2014苏州)若式子在实数范围内有意义,则x的取值范围是()Ax4Bx4Cx4Dx4【解答】解:依题意知,x40,解得x4故选:D5(3分)(2014苏州)如图,一个圆形转盘被分成6个圆心角都为60的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()ABCD【解答】解:设圆的面积为6,圆被分成6个相同扇形,每个扇形的面积为1,阴影区域的面积为4,指针指向阴影区域的概率=故选:D6(3分)(2014苏州)如图,在ABC中,点D在BC上,AB=AD=DC,B=80,则C的度数为()A30B40C45D60【解答】解:ABD中,AB=AD,B=
12、80,B=ADB=80,ADC=180ADB=100,AD=CD,C=40故选:B7(3分)(2014苏州)下列关于x的方程有实数根的是()Ax2x+1=0Bx2+x+1=0C(x1)(x+2)=0D(x1)2+1=0【解答】解:A、=(1)2411=30,方程没有实数根,所以A选项错误;B、=12411=30,方程没有实数根,所以B选项错误;C、x1=0或x+2=0,则x1=1,x2=2,所以C选项正确;D、(x1)2=1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误故选:C8(3分)(2014苏州)二次函数y=ax2+bx1(a0)的图象经过点(1,1),则代数式1a
13、b的值为()A3B1C2D5【解答】解:二次函数y=ax2+bx1(a0)的图象经过点(1,1),a+b1=1,a+b=2,1ab=1(a+b)=12=1故选:B9(3分)(2014苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60的方向,则该船航行的距离(即AB的长)为()A4kmB2kmC2kmD(+1)km【解答】解:如图,过点A作ADOB于D在RtAOD中,ADO=90,AOD=30,OA=4,AD=OA=2在RtABD中,ADB=90,B=CABAOB=7530=45,BD=AD=2,
14、AB=AD=2即该船航行的距离(即AB的长)为2km故选:C10(3分)(2014苏州)如图,AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上将AOB绕点B按顺时针方向旋转一定角度后得AOB,点A的对应点A在x轴上,则点O的坐标为()A(,)B(,)C(,)D(,4)【解答】解:如图,过点A作ACOB于C,过点O作ODAB于D,A(2,),OC=2,AC=,由勾股定理得,OA=3,AOB为等腰三角形,OB是底边,OB=2OC=22=4,由旋转的性质得,BO=OB=4,ABO=ABO,OD=4=,BD=4=,OD=OB+BD=4+=,点O的坐标为(,)故选:C二、填空题(共8小题,每小
15、题3分,共24分)11(3分)(2014苏州)的倒数是【解答】解:的倒数是,故答案为:12(3分)(2014苏州)已知地球的表面积约为km2,数用科学记数法可表示为5.1108【解答】解:510 000 000=5.1108故答案为:5.110813(3分)(2014苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4【解答】解:正方形ABCD的对角线AC=,边长AB=1,正方形ABCD的周长=41=4故答案为:414(3分)(2014苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数现从全体学生中随机抽取了
16、部分学生进行调查,并把调查结果绘制成如图所示的条形统计图已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人【解答】解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200=240(人),故答案为:24015(3分)(2014苏州)如图,在ABC中,AB=AC=5,BC=8若BPC=BAC,则tanBPC=【解答】解:过点A作AEBC于点E,AB=AC=5,BE=BC=8=4,BAE=BAC,BPC=BAC,BPC=BAE在RtBAE中,由勾股定理得AE=,tanBPC=tanBAE=故答案为:16(3分)(2014苏州)某地准备对一段长120m的河道进行清淤疏通若
17、甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20【解答】解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:x+y=20故答案为:2017(3分)(2014苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E若AEED=,则矩形ABCD的面积为5【解答】解:如图,连接BE,则BE=BC设AB=3x,BC=5x,四边形ABCD是矩形,AB=CD=3x
18、,AD=BC=5x,A=90,由勾股定理得:AE=4x,则DE=5x4x=x,AEED=,4xx=,解得:x=(负数舍去),则AB=3x=,BC=5x=,矩形ABCD的面积是ABBC=5,故答案为:518(3分)(2014苏州)如图,直线l与半径为4的O相切于点A,P是O上的一个动点(不与点A重合),过点P作PBl,垂足为B,连接PA设PA=x,PB=y,则(xy)的最大值是2【解答】解:如图,作直径AC,连接CP,CPA=90,AB是切线,CAAB,PBl,ACPB,CAP=APB,APCPBA,PA=x,PB=y,半径为4,=,y=x2,xy=xx2=x2+x=(x4)2+2,当x=4时,
19、xy有最大值是2,故答案为:2三、解答题(共11小题,共76分)19(5分)(2014苏州)计算:22+|1|【解答】解:原式=4+12=320(5分)(2014苏州)解不等式组:【解答】解:,由得:x3;由得:x4,则不等式组的解集为3x421(5分)(2015东莞)先化简,再求值:(1+),其中x=1【解答】解:=(+)=,把,代入原式=22(6分)(2014苏州)解分式方程:+=3【解答】解:去分母得:x2=3x3,解得:x=,经检验x=是分式方程的解23(6分)(2014苏州)如图,在RtABC中,ACB=90,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针
20、方向旋转90后得CE,连接EF(1)求证:BCDFCE;(2)若EFCD,求BDC的度数【解答】(1)证明:将线段CD绕点C按顺时针方向旋转90后得CE,CD=CE,DCE=90,ACB=90,BCD=90ACD=FCE,在BCD和FCE中,BCDFCE(SAS)(2)解:由(1)可知BCDFCE,BDC=E,BCD=FCE,DCE=DCA+FCE=DCA+BCD=ACB=90,EFCD,E=180DCE=90,BDC=9024(7分)(2014苏州)如图,已知函数y=x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a2)
21、,过点P作x轴的垂线,分别交函数y=x+b和y=x的图象于点C、D(1)求点A的坐标;(2)若OB=CD,求a的值【解答】解:(1)点M在直线y=x的图象上,且点M的横坐标为2,点M的坐标为(2,2),把M(2,2)代入y=x+b得1+b=2,解得b=3,一次函数的解析式为y=x+3,把y=0代入y=x+3得x+3=0,解得x=6,A点坐标为(6,0);(2)把x=0代入y=x+3得y=3,B点坐标为(0,3),CD=OB,CD=3,PCx轴,C点坐标为(a,a+3),D点坐标为(a,a)a(a+3)=3,a=425(7分)(2014苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进
22、行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率【解答】解:画树状图,如图所示:所有等可能的情况8种,其中A、C两个区域所涂颜色不相同的有4种,则P=26(8分)(2014苏州)如图,已知函数y=(x0)的图象经过点A、B,点A的坐标为(1,2),过点A作ACy轴,AC=1(点C位于点A的下方),过点C作CDx轴,与函数的图象交于点D,过点B作BECD,垂足E在线段CD上,连接OC、OD(1)求OCD的面积;(2)当BE=AC时,求CE的长【解答】解;(1)y=(x0)的图象经过点A(1,2),k=2ACy轴,AC=1,点C的坐标为(
23、1,1)CDx轴,点D在函数图象上,点D的坐标为(2,1)(2)BE=,BECD,点B的纵坐标=2=,由反比例函数y=,点B的横坐标x=2=,点B的横坐标是,纵坐标是CE=27(8分)(2014苏州)如图,已知O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF(1)若O的半径为3,DAB=120,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系【解答】(1)解:连接OB,OD,DAB=120,所对圆心角的度数为2
24、40,BOD=360240=120,O的半径为3,劣弧的长为:3=2;(2)证明:连接AC,AB=BE,点B为AE的中点,F是EC的中点,BF为EAC的中位线,BF=AC,=,+=+,=,BD=AC,BF=BD;(3)解:过点B作AE的垂线,与O的交点即为所求的点P,BF为EAC的中位线,BFAC,FBE=CAE,=,CAB=DBA,由作法可知BPAE,GBP=FBP,G为BD的中点,BG=BD,BG=BF,在PBG和PBF中,PBGPBF(SAS),PG=PF28(9分)(2014苏州)如图,已知l1l2,O与l1,l2都相切,O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合
25、,AB=4cm,AD=4cm,若O与矩形ABCD沿l1同时向右移动,O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图,连接OA、AC,则OAC的度数为105;(2)如图,两个图形移动一段时间后,O到达O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d2时,求t的取值范围(解答时可以利用备用图画出相关示意图)【解答】解:(1)l1l2,O与l1,l2都相切,OAD=45,AB=4cm
26、,AD=4cm,CD=4cm,tanDAC=,DAC=60,OAC的度数为:OAD+DAC=105,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设O1与l1的切点为E,连接O1E,可得O1E=2,O1El1,在RtA1D1C1中,A1D1=4,C1D1=4,tanC1A1D1=,C1A1D1=60,在RtA1O1E中,O1A1E=C1A1D1=60,A1E=,A1E=AA1OO12=t2,t2=,t=+2,OO1=3t=2+6;(3)当直线AC与O第一次相切时,设移动时间为t1,如图位置一,此时O移动到O2的位置,矩形ABCD移动到A2B2C2D2的位置,设O2与
27、直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,O2Fl1,O2GA2C2,由(2)得,C2A2D2=60,GA2F=120,O2A2F=60,在RtA2O2F中,O2F=2,A2F=,OO2=3t1,AF=AA2+A2F=4t1+,4t1+3t1=2,t1=2,当直线AC与O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,+2(2)=t2(+2),解得:t2=2+2,综上所述,当d2时,t的取值范围是:2t2+229(10分)(2014苏州)如图,
28、二次函数y=a(x22mx3m2)(其中a,m是常数,且a0,m0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,3),点D在二次函数的图象上,CDAB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分DAE(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由【解答】(1)解:将C(0,3)代入二次函数y=a(x22mx3m2),则
29、3=a(003m2),解得 a=(2)方法一:证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N由a(x22mx3m2)=0,解得 x1=m,x2=3m,则 A(m,0),B(3m,0)CDAB,D点的纵坐标为3,又D点在抛物线上,将D点纵坐标代入抛物线方程得D点的坐标为(2m,3)AB平分DAE,DAM=EAN,DMA=ENA=90,ADMAEN=设E坐标为(x,),=,x=4m,E(4m,5),AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,=,即为定值方法二:过点D、E分别作x轴的垂线,垂足为M、N,a(x22mx3m2)=0,x1=m,x2=3m,则A(m,0)
30、,B(3m,0),CDAB,D点的纵坐标为3,D(2m,3),AB平分DAE,KAD+KAE=0,A(m,0),D(2m,3),KAD=,KAE=,x23mx4m2=0,x1=m(舍),x2=4m,E(4m,5),DAM=EAN=90ADMAEN,DM=3,EN=5,(3)解:如图2,记二次函数图象顶点为F,则F的坐标为(m,4),过点F作FHx轴于点H连接FC并延长,与x轴负半轴交于一点,此点即为所求的点GtanCGO=,tanFGH=,=,OC=3,HF=4,OH=m,OG=3mGF=4, AD=3,=,AD:GF:AE=3:4:5,以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为3m参与本试卷答题和审题的老师有:;wdzyzlhx;caicl;dbz1018;sjzx;CJX;gsls;星期八;HJJ;hdq123;zjx111;wkd;sks;gbl210;wd1899;sd2011;SPIDER(排名不分先后)菁优网2016年7月19日专心-专注-专业