七年级上一元一次方程培优讲义(共15页).docx

上传人:飞****2 文档编号:14082199 上传时间:2022-05-02 格式:DOCX 页数:15 大小:105.02KB
返回 下载 相关 举报
七年级上一元一次方程培优讲义(共15页).docx_第1页
第1页 / 共15页
七年级上一元一次方程培优讲义(共15页).docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《七年级上一元一次方程培优讲义(共15页).docx》由会员分享,可在线阅读,更多相关《七年级上一元一次方程培优讲义(共15页).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上个性化辅导专家博大一对一辅导 #年级 #性别#教学课题一元一次方程培优讲义教学目标知识点:1、了解一元一次方程的概念,理解等式的基本性质。2、理解移项法则,会解一元一次方程。3、了解一元一次方程在解决问题中的应用。方 法:讲解和练习重点难点教学重点;一元一次方程的概念、解法教学难点;一元一次方程的解法应用课前检查作业完成情况:优 良 中 差 建议_教学内容一元一次方程复习提高要点一:方程及一元一次方程的相关概念方程的概念:含有未知数的等式叫做方程。一元一次方程的概念:方程两边都是整式,只含有一个未知数,并且未知数的指数是一次的方程叫做一元一次方程。其中“元”是指未知数

2、,“一元”是指一个未知数;“次”是指含有未知数的项的最高次数,“一次”是指含有未知数的项的最高次数是一次。等式、方程、一元一次方程的区别和联系:区别举例联系等式用等号连接的式子。3+2=5,x+1=0都是用等号连接的式子方程含有未知数的等式。X+1=0,x+y=2一元一次方程方程两边都是整式,只含有一个未知数并且未知数的指数是一次的方程。X+1=0,y+1=y方程的解的概念:使方程两边相等的未知数的值叫做方程的解。(1) 解方程的概念:求方程的解或判定方程无解的过程叫做解方程。(2) 判断一个未知数的值是不是方程的解:将未知数的值代入方程,看左右两边的值是否相等,能使方程左右两边相等的味之素的

3、值就是方程的解。否则就不是方程的解。一元一次方程的解法解一元一次方程的一般步骤、注意点、基本思路。一般步骤注意点(1)去分母方程的每一项都要乘以最简公分母(2)去括号去掉括号,括号内的每项符号都要同时变或不变(3)移项移项要变号(4)合并同类项只要把系数合并,字母和它的指数不变。(5)方程两边同除以未知数的系数相除时系数不等于0。若为0,则方程可能无解或有无穷多解。重点题型总结及应用知识点一:一元一次方程的概念例1、 已知下列各式:2x51;871;xy;xyx2;3xy6;5x3y4z0;8;x0。其中方程的个数是()A、5B、6C、7D、8举一反三:【变式1】判断下列哪些方程是一元一次方程

4、: (1)-2x2+3=x (2)3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2)【变式2】若关于的方程是一个一元一次方程,则_【变式3】若关于的方程是一元一次方程,则_【变式4】若关于的方程是一元一次方程,则_【变式5】若关于的方程是一元一次方程,则_【变式6】已知:(a3)(2a5)x(a3)y60是关于x的一元一次方程,则a=_知识点二:方程的解 题型一:已知方程的解,求未知常数例2、当取何值时,关于的方程的解为?举一反三:已知(1)当时,求的值;(2)当时,求的值题型二:已知一方程的解,求另一方程的解例3、已知是关于的方程的解,解关于的方程:题型三:同解问题例4、

5、方程与的解相同,求的值.举一反三:【变式1】已知方程与方程的解相同(1)求的值;(2)求代数式的值【变式2】已知方程与方程的解相同,求k 的值.【变式3】方程的解与关于x的方程的解互为倒数,求k的值。题型四:已知方程解的情况,求未知常数的取值范围例5、要使方程ax=a的解为1,则( )A.a可取任何有理数 B.a0 C. a0 D.a0例6、关于x的方程ax+3=4x+1的解为正整数,则a的值为( )A. 2 B. 3 C.1或2 D.2或3举一反三:已知方程2ax=(a1)x+6,求a为何整数时,方程的解是正整数.知识点三:等式的性质(方程变形解方程的重要依据)注:分数的基本的性质主要是用于

6、将方程中的小数系数(特别是分母中的小数)化为 ,如方程:=1.6,将其化为: =1.6。方程的右边没有变化,这要与“去分母”区别开。例7、下列等式变形正确的是( )A.若,则 B. 若,则C.若,则 D. 若,则举一反三:1、若,下列变形不一定正确的是( )A. B. C. D. 2、下列等式变形错误的是( )A.由a=b得a+5=b+5 B.由a=b得6a=6b C.由x+2=y+2得x=y D.由x3=3y得x=y3、运用等式性质进行的变形,正确的是( ) A.如果a=b 那么a+c=b-c; B.如果6a=b-6 那么a=b; C.如果a=b 那么a3=b3 ; D.如果a2=3a 那么

7、a=3 4、下列等式变形错误的是( ) A.由a=b得a+5=b+5 B.由a=b得 C.由x+2=y+2得x=y D.由-3x=-3y得x=-y5、运用等式性质进行的变形,正确的是( ) A.如果a=b,那么a+c=b-c; B.如果,那么a=b; C.如果a=b,那么; D.如果a2=3a,那么a=36、如果ma=mb,那么下列等式中不一定成立的是()A. ma+1=mb+1 B.ma3=mb3 C. a=b D. 7、运用等式性质进行的变形,正确的是( )。 A.如果a=b,那么a+c=b-c; B.如果,那么a=b; C.如果a=b,那么 D.如果,那么a=3知识点四:解一元一次方程的

8、一般步骤:例8、(用常规方法)解方程:(非常规方法解方程)(一)巧凑整数解方程例9、解方程:思路点拨:仔细观察发现,含未知数的项的系数和为 ,常数项和为 ,故直接移项凑成 比先去分母简单。举一反三:【变式】解方程:2x5(二)巧用观察法解方程例10、解方程:(三)巧去括号法解方程含多层括号的一元一次方程,要根据方程中各系数的特点,选择适当的去括号的方法,以避免繁杂的计算过程。例11、解方程:思路点拨:因为题目中分数的分子和分母具有倍数关系,所以从 向 去括号可以使计算简单。举一反三:【变式】解方程:(四)运用拆项法解方程在解有分母的一元一次方程时,可以不直接去分母,而是逆用分数加减法法则,拆项

9、后再合并,有时可以使运算简便。例12、解方程:思路点拨:注意到_,这样逆用分数加减法法则,可使计算简便。(五)巧去分母解方程当方程的分母含有小数,而小数之间又没有特殊的倍数关系时,若直接去分母则会出现比较繁琐的运算。为了避免这样的运算。应把分母化成整数。化整数时,利用分数的基本性质将各个分子、分母同时扩大相同的倍数即可。例13、解方程:1(六)巧组合解方程例14、解方程:思路点拨:按常规解法将方程两边同乘 化去分母,但运算较复杂,注意到左边的第一项和右边的第 项中的分母有公约数 ,左边的第 项和右边的第一项的分母有公约数 ,移项局部通分化简,可简化解题过程。(七)巧解含有绝对值的方程解含有绝对

10、值的方程的基本思想是先去掉绝对值符号,转化为一般的一元一次方程。对于只含一重绝对值符号的方程,依据绝对值的意义,直接去绝对值符号,化为两个一元一次方程分别解之,即若|x|m,则_。例15、解方程:|x2|30解法一: 解法二:举一反三:【变式1】5|x|163|x|4【变式2】 解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行。(2)当括号内含有分数时,常由外向内先去括号,再去分母。(3)当分母中含有小数时,可用分数的基本性质化成整数。(4)运用整体思想,即把含有未知数的代数式看作整体进行变形。知识点五:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用题型一

11、:方程有唯一解例16、若(3a+2b)x2+ax+b=0是关于x的一元一次方程,且x有唯一解,求这个解.题型二:方程有无数解例17、关于x的方程3x4=abx有无穷多个解,则a. b的值应是( )A. a=4, b=3 B.a=4, b=3 C. a=4 , b=3 D.a .b可取任意数题型三:方程无解例18、已知关于x的方程无解,则a的值是( ) A.1 B.-1 C.1 D.不等于1的数举一反三:1、已知关于x的方程a(2x-1)=3x-2无解,试求a的值2、若关于x的方程 2x1 +m=0无解,则m=_.3.(1)关于x的方程4k(x+2)1=2x无解,求k的值; (2)关于x的方程kxk=2x5的解为正数,求k的取值范围.4、已知关于x的方程a(2x1)=4x+3b,当a、b为何值时: (1)方程有唯一解? (2)方程有无数解? (3)方程没有解?总结升华: 理解方程ax=b在不同条件下解的各种情况(1)a0时,方程有唯一解x=; (2)a=0,b=0时,方程有无数个解; (3)a=0,b0时,方程无解。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁