《函数的奇偶性导学案(共2页).doc》由会员分享,可在线阅读,更多相关《函数的奇偶性导学案(共2页).doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上导学案:函数的奇偶性姓名:_班级:_时间:_一、学习目标:(1)理解函数的奇偶性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)学会判断函数的奇偶性教学重点:函数的奇偶性及其几何意义教学难点:判断函数的奇偶性的方法与格式 二、复习引入:轴对称图形: 如果一个图形上的任意一点关于某一条直线的对称点仍是这个图形上的点,就称图形关于该直线成轴对称图形,这条直线称作轴对称图形的对称轴。中心对称图形:如果一个图形上的任意一点关于某一点的对称点仍是这个图形上的点,就称图形关于该点成中心对称图形,这个点称作中心对称图形的对称中心。三、新知探究:学点一、偶函数1、画出
2、函数与的图象-3-2-101230图象为:-3-2-1012301、 偶函数定义:一般地,如果对于函数f(x)的定义域内_一个x,都有_,那么函数f(x)就叫做偶函数。2、 偶函数图象关于_对称,反过来,如果一个函数的图象关于y轴对称,那么这个函数是_.3、 若偶函数f(x)在上是减函数,则有f(x)在上是_.4、 若f(x)是偶函数,则其定义域关于_对称.5、 若y=f(x)是偶函数,则f(x)与f()的大小关系是_.学点二、奇函数认真阅读教材P34-P35,类比偶函数的定义,学习奇函数的定义.1、 奇函数的定义:一般地,如果对于函数f(x)的定义域内_一个x,都有_,那么函数f(x)就叫做
3、奇函数.2、 奇函数的图象关于_对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是_.3、 若f(x)是奇函数,则其定义域关于_对称.4、 若奇函数f(x)在x=0处有定义,则f(0)=_.5、 奇偶性:如果函数f(x)是_或_,那么,就说函数f(x)具有奇偶性.小结反思:四、典型例题1、判断下列函数的奇偶性小结反思:五、当堂检测1、下列图象表示具有奇偶性的函数的是( )xxy0-1xy0-11-11xy0y0A B C D2、对于定义在R上的任意奇函数f(x),下列关系式正确的是( )3、函数的奇偶性_4、如果定义在区间3-a,5上的函数为奇函数,那么a=_5、已知f(x)是定义上的奇函数,且f(x)在上是减函数,下列关系式中正确的是( )A、f(5)f(-5);B、f(4)f(3);C、f(-2)f(2);D、f(-8)=f(8)6、已知,且f(-2)=10,那么f(2)=_7、(2010年山东高考)设f(x)为定义在R上的奇函数,当时(b为常数),则f(-1)=A、3;B、1;C、-1;D、-3六、我的收获七、课后作业层次1:教材36页1、题层次2、教材习题1.3A组6题层次3、教材习题1.3B组3题预习教材P35思考题(2)问,动手试一试教材P36第2题专心-专注-专业