2019-2020学年高二数学《椭圆的标准方程》学案.doc

上传人:知****量 文档编号:13084022 上传时间:2022-04-27 格式:DOC 页数:5 大小:258KB
返回 下载 相关 举报
2019-2020学年高二数学《椭圆的标准方程》学案.doc_第1页
第1页 / 共5页
2019-2020学年高二数学《椭圆的标准方程》学案.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《2019-2020学年高二数学《椭圆的标准方程》学案.doc》由会员分享,可在线阅读,更多相关《2019-2020学年高二数学《椭圆的标准方程》学案.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2019-2020学年高二数学椭圆的标准方程学案教学目标:掌握椭圆标准方程的求解,掌握焦点三角形、焦半径的处理问题的方法.教学重点:椭圆标准方程、焦点三角形.教学难点:焦点三角形、焦半径的处理问题的方法.教学过程:一、课前检测1.焦点在轴上椭圆的标准方程为 ,其焦点坐标为 .2. 焦点在轴上椭圆的标准方程为 ,其焦点坐标为 .3.分别为椭圆的左右焦点,P为其上任一点,则的周长等于 .二、新课讲授例1、(进一步训练求椭圆的标准方程)分别求满足下列条件的椭圆标准方程。(1)经过点(2,-3)且与椭圆有相同的焦点。(2)经过点(2,-3)且与椭圆有相同的焦距。(3)过两点()和点。 (4)焦点在y轴

2、上,且过点(0,2)和(1,0)。(5)过两点P(-2,0),Q(0,-3).(6)焦点是F1(-2,0),F2(2,0),且过点P().例2、(题组训练焦点三角形问题)已知椭圆的左右两个焦点分别为F1,F2 。1、 直线过F1交椭圆于AB两点,求的周长。2、 M为椭圆上一动点,求面积的最大值。3、 点P是椭圆上一点,且,求总第33页(第9课时第1页)例3、已知椭圆,直线与之交于A、B两点,在椭圆上求一点P,使面积的最大,并求出此最大值.备用题(轨迹问题)例:的两个顶点A(-6,0),B(6,0),边AC,BC所在直线的斜率之积为,求顶点C的轨迹,判断其轨迹为何种曲线,说明理由。并画出图形。(

3、直译法求轨迹方程)练习:已知圆C:与圆内一定点B(3,0),圆P过点B且与圆C内切,求圆心P的轨迹是方程。(定义法求轨迹)三、课堂总结总第34页(第9课时第2页)作业班级 学号 姓名 等第 1、椭圆的焦点坐标为 2、设F1,F2是椭圆的两个焦点,P是椭圆上一点,且|PF1|PF2|=1,则= 3、已知椭圆, M1,M2为其上的点。(1)点M1(4,2.4)与焦点的距离分别是 , 。(2)点M2到一个焦点的距离为3,则它到另一个焦点的距离为 。4、P为椭圆的上一点,则上焦半径PF1的取值范围为 ,当其取得最大值时P点坐标为 ,当其取得最小值时P点坐标为 ,5、已知方程表示焦点在y轴上的椭圆,求m

4、的取值范围。 6、椭圆的两焦点为F1,F2,探究在椭圆上是否存在一点P,使得,若存在,请求出此时P点坐标,并求出.同时指出当时,点P横坐标的取值范围。7、分别求满足下列条件的椭圆标准方程。(1)过点P(1,),Q()。 (2)焦点在x轴上,焦距为4,并且过点 总第35页(第9课时第3页)8、的三边a,b,c成等差数列且满足abc,A,C两点坐标分别是,求顶点B的轨迹方程。9、设点P(x,y),是椭圆上的点,点A(4,0),B(4,0),试判断(即PA与PB斜率之积)是否为定值?若是,求出其定值,若不是,请说明理由。【附加题】10、已知椭圆左右两个焦点分别为F1,F2 。(1) 一直线过F1交椭圆于AB两点,求的周长。(2) M为椭圆上一动点,求面积的最大值。(3)点P是椭圆上一点,且,求(4)在椭圆上是否存在一点P,使得,若存在求出,若不存在说明理由。总第36页(第9课时第4页)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁