《中考数学二次函数专题总复习学生用.doc》由会员分享,可在线阅读,更多相关《中考数学二次函数专题总复习学生用.doc(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、. .二次函数专题复习一、中考要求:1经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系2能用表格、表达式、图象表示变量之间的二次函数关系,发展有条理的思考和语言表达能力;能根据具体问题,选取适当的方法表示变量之间的二次函数关系3会作二次函数的图象,并能根据图象对二次函数的性质进行分析,逐步积累研究函数性质的经验4能根据二次函数的表达式确定二次函数的开口方向,对称轴和顶点坐标5理解一元二次方程与二次函数的关系,并能利用二次函数的图象求一元二次方程的近似根6能利用二次函数解决实际问题,能对变量的变化趋势进行预测二、中考卷研究(一)中考对知识点的
2、考查:部分省市课标中考涉及的知识点如下表: 序号所考知识点比率1二次函数的图象和性质2.53%2二次函数的图象与系数的关系6%3二次函数解析式的求法2.510.5%4二次函数解决实际问题810%(二)中考热点: 二次函数知识是每年中考的重点知识,是每卷必考的主要内容,本章主要考查二次函数的概念、图象、性质及应用,这些知识是考查学生综合能力,解决实际问题的能力因此函数的实际应用是中考的热点,和几何、方程所组成的综合题是中考的热点问题三、中考命题趋势及复习对策二次函数是数学中最重要的内容之一,题量约占全部试题的1015,分值约占总分的1015,题型既有低档的填空题和选择题,又有中档的解答题,更有大
3、量的综合题,近几年中考试卷中还出现了设计新颖、贴近生活、反映时代特征的阅读理解题、开放探索题、函数应用题,这部分试题包括了初中代数的所有数学思想和方法,全面地考查学生的计算能力,逻辑思维能力,空间想象能力和创造能力。针对中考命题趋势,在复习时应首先理解二次函数的概念,掌握其性质和图象,还应注重其应用以及二次函数与几何图形的联系,此外对各种函数的综合应用还应多加练习.考点1:二次函数的图象和性质一、考点讲解:1二次函数的定义:形如(a0,a,b,c为常数)的函数为二次函数2二次函数的图象及性质: 二次函数y=ax2 (a0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a0时,抛物线开口向上
4、,顶点是最低点;当a0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大y=a(xh)2k的对称轴是x=h,顶点坐标是(h,k)。 二次函数的图象是一条抛物线顶点为(,),对称轴x=;当a0时,抛物线开口向上,图象有最低点,且x,y随x的增大而增大,x,y随x的增大而减小;当a0时,抛物线开口向下,图象有最高点,且x,y随x的增大而减小,x,y随x的增大而增大注意:分析二次函数增减性时,一定要以对称轴为分界线。首先要看所要分析的点是否是在对称轴同侧还是异侧,然后再根据具体情况分析其大小情况。 解题小诀窍:二次函数上两点坐标为(),(),即两点纵坐标相等,则其对称轴为直线。 当a0时,当x
5、=时,函数有最小值;当a0时,当 x=时,函数有最大值。3图象的平移:将二次函数y=ax2 (a0)的图象进行平移,可得到y=ax2c,y=a(xh)2,y=a(xh)2k的图象 将y=ax2的图象向上(c0)或向下(c 0)平移|c|个单位,即可得到y=ax2c的图象其顶点是(0,c),形状、对称轴、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向右(h0)平移|h|个单位,即可得到y=a(xh)2的图象其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向下(k0)平移|k|个单位,即可得到y=a(xh)2 +k的
6、图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同 注意:二次函数y=ax2 与y=ax2 的图像关于x轴对称。平移的简记口诀是“上加下减,左加右减”。一、 经典考题剖析:【考题】(2009、).抛物线y=4(x+2)2+5的对称轴是_【考题2】(2009、宁安)函数y= x24的图象与y 轴的交点坐标是( ) A.(2,0) B.(2,0) C.(0,4) D.(0,4)【考题】在平面直角坐标系内,如果将抛物线向右平移2个单位,向下平移3个单位,平移后二次函数的关系式是() 【考题】(2009、)已知抛物线的部分图象(如图1-2-1),图象再次与x轴相交时的坐
7、标是( ) A(5,0)B.(6,0) C(7,0)D.(8,0)yO【考题】()二次函数图像如图所示,若点(,),(,)是它的图像上两点,则与的大小关系是()不能确定 三、针对性训练: 1已知直线y=x与二次函数y=ax2 2x1的图象的一个交点 M的横标为1,则a的值为( ) A、2 B、1 C、3 D、42已知反比例函数y= 的图象在每个象限内y随x的增大而增大,则二次函数y=2kx2 x+k2的图象大致为图123中的( ) 4抛物线y=x2x5的顶点坐标是( ) A(2,1) B(2,1) C(2,l) D(2,1)二次函数 y=2(x3)2+5的图象的开口方向、对称轴和顶点坐标分别为
8、( ) A开口向下,对称轴x=3,顶点坐标为(3,5) B开口向下,对称轴x3,顶点坐标为(3,5) C开口向上,对称轴x=3,顶点坐标为(3,5) D开口向上,对称轴x=3,顶点(3,5)二次函数的图象上有两点(3,8)和(5,8),则此拋物线的对称轴是( ) A B. C. D.7在平面直角坐标系内,如果将抛物线 向右平移3个单位,向下平移4个单位,平移后二次函数的关系式是( )8.已知,点A(1,),B(,),C(5,)在函数的图像上,则,的大小关系是() A . B. C. D.9已知二次函数(a0)与一次函数y=kx+m(k0)的图象相交于点A(2,4),B(8,2),如图127所示
9、,能使y1y2成立的x取值X围是_3x=110.(襄樊)抛物线的图像如图所示,则抛物线的解析式为_。11.若二次函数的顶点坐标是(2,1),则b=_,c=_。12直线y=x+2与抛物线y=x2 +2x的交点坐标为_13读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化 例如:由抛物线,有y=,所以抛物线的顶点坐标为(m,2m1),即。 当m的值变化时,x、y的值随之变化,因而y值也随x值的变化而变化,将代人,得y=2x1l可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足y=2x1,回答问题:(1)在上述过程中,由到所用的数学方法是_,
10、其中运用了_公式,由得到所用的数学方法是_;(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标与横坐标x之间的关系式_.14抛物线经过第一、三、四象限,则抛物线的顶点必在( ) A第一象限 B第二象限C第三象限 D第四象限15 已知M、N两点关于 y轴对称,且点 M在双曲线 y= 上,点 N在直线y=x+3上,设点M的坐标为(a,b),则抛物线y=abx2+(ab)x的顶点坐标为_.16当b0时,一次函数y=ax+b和二次函数y=ax2bxc在同一坐标系中的图象大致是图129中的( )考点2:二次函数的图象与系数的关系一、考点讲解:1、a的符号:a的符号由抛物线的开口方向决定抛物线开口向上,
11、则a0;抛物线开口向下,则a02、b的符号由对称轴决定,若对称轴是y轴,则b=0;若抛物线的顶点在y轴左侧,顶点的横坐标0,即0,则a、b为同号;若抛物线的顶点在y轴右侧,顶点的横坐标0,即0则a、b异号间“左同右异”3c的符号:c的符号由抛物线与y轴的交点位置确定若抛物线交y轴于正半,则c0,抛物线交y轴于负半轴则c0;若抛物线过原点,则c=04的符号:的符号由抛物线与x轴的交点个数决定若抛物线与x轴只有一个交点,则=0;有两个交点,则0没有交点,则0 5、a+b+c与ab+c的符号:a+b+c是抛物线(a0)上的点(1,a+b+c)的纵坐标,ab+c是抛物线(a0)上的点(1,abc)的纵
12、坐标根据点的位置,可确定它们的符号.二、经典考题剖析:【考题1】(2009、潍坊)已知二次函数的图象如图 l22所示,则a、b、c满足( ) Aa0,b0,c0 Ba0,b0,c0Ca0,b0,c0 Da0,b0,c0 【考题2】(2009、XX)已知二次函数 (a0)且a0,ab+c0,则一定有( ) Ab24ac0 Bb24ac0 Cb24ac0 Db24ac0【考题】(2009、)二次函数的图象如图1210,则点(b,)在() A第一象限B第二象限 C第三象限D第四象限三、针对性训练:1已知函数的图象如图1211所示,给出下列关于系数a、b、c的不等式:a0,b0,c0,2ab 0,ab
13、c0其中正确的不等式的序号为_-2已知抛物线与x轴交点的横坐标为1,则ac=_.3抛物线中,已知a:b:c=l:2:3,最小值为6,则此抛物线的解析式为_4已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数解析式: _.5抛物线如图1212 所示,则它关于y轴对称的抛物线的解析式是_.6若抛物线过点(1,0)且其解析式中二次项系数为1,则它的解析式为_(任写一个)7已知二次函数的图象与x轴交于点(2,0),(x1,0)且1x12,与y轴正半轴的交点连点(0,2)的下方,下列结论:ab0;2a+c0;4a+c 0,2ab+l0其中的有正确的结论是(填写序号)_8若二
14、次函数的图象如图,则ac_0(“”“”或“=”) 第8题图9二次函数的图象如图 1214所示,则下列关于a、b、c间的关系判断正确的是() Aab0 B、bc0 Ca+bc0 Dab十c010抛物线(a0)的顶点在x轴上方的条件是() Ab24ac0 Bb24ac 0 Cb24ac0 D c 011 二次函数y=3x2;y= x2;y= x2的图象的开口大小顺序应为() A(1)(2)(3)B(1)(3)(2)C(2)(3)(1)D(2)(1)(3)考点3:二次函数解析式求法一、考点讲解:1二次函数的三种表示方法:表格法:可以清楚、直接地表示出变量之间的数值对应关系;图象法:可以直观地表示出函
15、数的变化过程和变化趋势;表达式:可以比较全面、完整、简洁地表示出变量之间的关系2二次函数表达式的求法:一般式法:若已知抛物线上三点坐标,可利用待定系数法求得;将已知的三个点的坐标分别代入解析式,得到一个三元一次方程组,解这个方程组即可。顶点式法:若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式:其中顶点为(h,k),对称轴为直线x=h;交点式法:若已知抛物线与x轴的交点坐标或交点的横坐标,则可采用交点式:,其中与x轴的交点坐标为(x1,0),(x2,0)。解题小诀窍:在求二次函数解析式时,要灵活根据题目给出的条件来设解析式。例如,已知二次函数的顶点在坐标原点可设;已知顶点(0,c),即在y轴
16、上时可设;已知顶点(h,0)即顶点在x轴上可设. 注意:当涉及面积周长的问题时,一定要注意自变量的取值X围。二、经典考题剖析:【考题1】(2009、)如图1216所示,要在底边BC=160cm,高AD=120cm的ABC铁皮余料上,截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M,此时。(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函数关系式;(2)当x为何值时,矩形EFGH的面积S最大?(3)以面积最大的矩形EFGH为侧面,围成一个圆柱形的铁桶,怎样围时,才能使铁桶的体积较大?请说明理由(注:围铁桶侧面时,接缝无重叠,底面另用材料配备)【考题
17、2】在直角坐标系中,AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),把AOB绕O点按逆时针方向旋转900到COD。(1)求C,D两点的坐标;(2)求经过C,D,B三点的抛物线解析式。【考题3】如图,抛物线的对称轴是直线x=1,它与x轴交于A,B两点,与y轴交于C点。点A,C的坐标分别是(1,0),(0,)。(1)求此抛物线对应的函数解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求ABP的面积的最大值。【考题4】(2009、)目前,国内最大跨江的钢管混凝土拱桥永和大桥,是XX市又一标志性建筑,其拱形图形为抛物线的一部分(如图 1218),在正常情况下,位于水面上的桥拱跨度
18、为350米,拱高为85米。在所给的直角坐标系中(如图1219),假设抛物线的表达式为,请你根据上述数据求出、的值,并写出抛物线的表达式(不要求写自变量的取值X围,、的值保留两个有效数字)。七月份汛期将要来临,当邕江水位上涨后,位于水面上的桥拱跨度将会减小,当水位上涨4时,位于水面上的桥拱跨度有多大?(结果保留整数)【考题5】(2009、)已知抛物线y=x2+(2n1)x+n21 (n为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作ABx轴
19、于B,DCx轴于C.当BC=1时,求矩形ABCD的周长;试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.【考题6】(2009、郸县)如图1224,OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将OA B折叠,使点A落在边OB上,记为A,折痕为EF(1)当AEx轴时,求点A和E的坐标;(2)当AEx轴,且抛物线经过点A和E时,求该抛物线与x轴的交点的坐标;(3)当点A在OB上运动但不与点O、B重合时,能否使AEF成为直角三角形若能,请求出此时点A的坐标;若不能,请你说明理由【考题】如图,已知二次函数图像的顶
20、点坐标为C(1,0),直线与二次函数的图像交于A、B两点,其中A点的坐标为(3,4),B点在y轴上。(1)求m的值及二次函数的解析式; (2)P为线段AB上的一个动点(点P与A,B不重合),过点P做x轴的垂线与二次函数图像交于点E,设线段PE的长度为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值X围; (3)D为直线AB与这个二次函数图像对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请说明理由。三、针对性训练:1二次函数的图象经过点(3,2),(2,7),(0,1),求其解析式2已知抛物线的对称轴为直线x=2,且经过点(l,1),(4,
21、0)两点求抛物线的解析式3已知抛物线与 x轴交于点(1,0)和(2,0)且过点 (3,4),求抛物线的解析式4已知二次函数的图象经过点A(0,1)B(2,1)两点(1)求b和c的值;(2)试判断点P(1,2)是否在此抛物线上?5已知一个二次函数的图象如图1225所示,请你求出这个二次函数的表达式,并求出顶点坐标和对称轴方程6已知抛物线过三点(1,1)、(0,2)、(1,l)(1)求抛物线所对应的二次函数的表达式;(2)写出它的开口方向、对称轴和顶点坐标;(3)这个函数有最大值还是最小值? 这个值是多少?7当 x=4时,函数的最小值为8,抛物线过点(6,0)求:(1)顶点坐标和对称轴;(2)函数
22、的表达式;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小8在ABC中,ABC90 ,点C在x轴正半轴上,点A在x轴负半轴上,点B在y轴正半轴上(图1226所示),若 tanBAC= ,OB=2,求经过 A、B、C点的抛物线的解析式9已知:如图1227所示,直线y=x+3与x轴、y轴分别交于点B、C,抛物线y=x2bxc经过点B、C,点A是抛物线与x轴的另一个交点(1)求抛物线的解析式;(2)若点P在直线BC上,且SPAC=SPAB,求点P的坐标10四边形DEFH为ABC的内接矩形(图1228),AM为BC边上的高,DE长为x,矩形的面积为y,请写出y与x之间的函数关系式
23、,并判断它是不是关于x的二次函数.考点4:根据二次函数图象解一元二次方程的近似解一、考点讲解:1二次函数与一元二次方程的关系:(1)一元二次方程就是二次函数当函数y的值为0时的情况(2)二次函数的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2bxc=0的根(3)当二次函数的图象与 x轴有两个交点时,则一元二次方程有两个不相等的实数根;当二次函数的图象与x轴有一个交点时,则一元二次方程ax2bxc0有两个相等的实数根;当二次函数yax2+ bx+c的图象与 x轴没有交点时,则一元二次方程没
24、有实数根解题小诀窍:抛物线与x轴的两个交点间的距离可以用| x1x2|来表示。二、经典考题剖析:【考题1】(2009、XX模拟)关于二次函数 的图象有下列命题:当c=0时,函数的图象经过原点;当c0且函数的图象开口向下时,axbxc=0必有两个不等实根;函数图象最高点的纵坐标是;当b=0时,函数的图象关于y轴对称其中正确的个数是() A1 B2 C3D4【考题2】(2009、XX模拟,8分)已知二次函数y=x26x+8,求: (1)抛物线与x轴y轴相交的交点坐标; (2)抛物线的顶点坐标; (3)画出此抛物线图象,利用图象回答下列问题: 方程x2 6x8=0的解是什么? x取什么值时,函数值大
25、于0? x取什么值时,函数值小于0?【考题3】(2009、XX)已知抛物线yx22x8,(1)求证:该抛物线与x轴一定有两个交点; (2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求ABP的面积三、针对性训练:1已知函数y=kx27x7的图象和x轴有交点,则k的取值X围是()2直线y=3x3与抛物线y=x2 x+1的交点的个数是() A0 B1 C2 D不能确定3函数的图象如图l230,那么关于x的方程的根的情况是() A有两个不等的实数根B有两个异号实数根 C有两个相等实数根D无实数根4二次函数的图象如图l231所示,则下列结论成立的是() Aa0,bc0,0 B.a0,bc0
26、,0 Ca0,bc0,0D.a0,bc0,05函数的图象如图 l232所示,则下列结论错误的是() Aa0 Bb24ac0 C、的两根之和为负 D、的两根之积为正6不论m为何实数,抛物线y=x2mxm2( )A在x轴上方B与x轴只有一个交点 C与x轴有两个交点D在x轴下方7画出函数y =x22x3的图象,利用图象回答:(1)方程x22x3=0的解是什么?(2)b取什么值时,函数值大于0?(3)b取什么值时,函数值小于0?8已知二次函数y =x2x6(1)求二次函数图象与坐标轴的交点坐标及顶点坐标;(2)画出函数图象;(3)观察图象,指出方程x2x6=0的解;(4)求二次函数图象与坐标轴交点所构
27、成的三角形的面积考点5:用二次函数解决实际问题一、考点讲解:1二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值注意:二次函数实际问题主要分为两个方面的问题,几何图形面积问题和经济问题。解几何图形面积问题时要把面积公式中的各个部分分别用同一个未知数表示出来,如三角形S=,我们要用x分别把h,l表示出来。经济问题:总利润=总销售额总成本;总利润=单件利润销售数量。解最值问题时,一定要注意自变量的取值X围。分为三类:对称轴在
28、取值X围内;取值X围在对称轴左边;取值X围在对称轴右边。2解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等二、经典考题剖析:【考题1】(2009、,12分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表: 若日销售量y是销售价x的一次函数;(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?【考题2】(2009、鹿泉)
29、图1233是某段河床横断面的示意图查阅该河段的水文资料,得到下表中的数据:x/m51020304050y/m0.1250.524.5812.5(1)请你以上表中的各对数据(x,y)作为点的坐标,尝试在图1234所示的坐标系中画出y关于x的函数图像;(2)填写下表:x51020304050根据所填表中数据呈现的规律,猜想出用x表示y的二次函数关系式:_.(3)当水面宽度为36m时,一般吃水深度(船底部到水面的距离)为1.8m的货船能否在这个河段安全通过?为什么?【考题3】我区某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,我区政府对该花木产品每投资x万元,所获利润为P(x30)
30、210万元。为了响应我国西部大开发的宏伟决策,我区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元。若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通。公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q(50x)2(50x)308万元。若不进行开发,求10年所获利润的最大值是多少?若按此规划进行开发,求10年所获利润的最大值是多少?根据、计算的结果,请你用一句话谈谈你的想法。【考题4】学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OAO恰
31、好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下且在过OA的任意平面上的抛物线如图l236所示,建立平面直角坐标系(如图l237),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是,请回答下列问题:(1)花形柱子OA的高度;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?【考题5】(2009、)某工厂现有 80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机 器,每台机器平均每天将少生产4件产品(1)如果增加x台机器,每天的生产总
32、量为y件,请你写出y与x之间的关系式;。(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?三、针对性训练:1小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?2数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在4070元之间,若以每箱50元销售平均每天销售90箱,价格每降低1元平均每天可多销售3箱老师要求根据以上资料,解答下列问题,你能做到吗?写出平均每天销售量y(箱)与每箱售价社元)之间的函数关系;写
33、出平均每天销售利润W(元)与每箱售价x(元)之间的函数关系;求出中M次函数的顶点坐标及当x=40、70时的W的值3某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价l元,每天的销售量就会减少10件写出售价x(元件)与每天所得的利润y(元)之间的函数关系式;每件售价定为多少元,才能使一天的利润最大?4图1238所示是一条高速公路上的隧道口在平面直角坐标系上的示意图,点A和A1,点B和B1分别关于y轴对称,隧道拱部分BCB1为一段抛物线,最高点C离路面AA1的距离为8米,点B离路面AA1的距离为6米,隧道的宽
34、AA1为16米求隧道拱抛物线BC B1的函数解析式;现有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与路面的距离为7米,它能否安全通过这个隧道?说明理由5启明公司生产某种产品,每件产品成本是8元,售价是4元,年销售量为10万件为了获得更好的效益,公司准备拿出一定的资金做广告根据经验,每年投人的广告费是x(万元)时,产品的年销售量将是原销售量的y倍,且y=,如果把利润看作是销售总额减去成本费和广告费:(1)试写出年利润S(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元?(2)把(1)中的最大利润留出3万元做广告,其余
35、的资金投资 新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表: 如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问:有几种符合要求的投资方式?写出每种投资方式所选的项目6某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产X只玩具熊猫的成本为R((元),售价每只为P(元)且R,P与X的关系式为 R=5003.5x,P=170 2x当日产量为多少时,每日获得的利润为1750元;当日产量为多少时,可获得最大利润?最大利润是多少?中考题一网打尽【回顾1】(2010、嘉峪关,3分)抛物线y=x22x3的对称轴是直线( ) A
36、x =2 Bx =2 Cx =1 Dx =1 【回顾2】(2010、嘉峪关,3分)如图1239,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设O1的半径为y,AM= x,则y关于x的函数关系式是( ) A【回顾3】(2010、,3分)二次函数y=x2+2x7的函数值是8,那么对应的x的值是( ) A3 B5 C3和5 D3和5 【回顾4】(2010、,3分)抛物线y=x2x的顶点坐标是( )【回顾5】(2010、,3分)二次函数的图象,如图1240所示,根据图象可得a、b、c与0的大小关系是( ) Aa0,b0,c0 Ba0,b0,c0 Ca0,b0,c0 Da0,b0,c0
37、【回顾6】(2010、,4分)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=35 t49 t2(t的单位s;h中的单位:m)可以描述他跳跃时 重心高度的变化如图1241,则他起跳后到重心最高时所用的时间是( ) A071s B0.70s C0.63s D036s【回顾7】(2010、,4分)已知抛物线的解析式为y=(x2)2l,则抛物线的顶点坐标是( ) A(2,1) B(2,l)C(2,1) D(1,2)【回顾8】(2010、,3分)若二次函数y=x2x与y=x2+k的图象的顶点重合,则下列结论不正确的是( ) A这两个函数图象有相同的对称轴 B这两个函数图象的开口方向相反 C方程x
38、2+k=0没有实数根 D二次函数y=x2k的最大值为【回顾9】(2010、衡州)抛物线y=x2 +2x3 与x轴的交点的个数有( ) A0个 B1个 C2个 D3个【回顾10】(2010、)抛物线y=(xl)2 +2 的对称轴是( ) A直线x=1 B直线x=1 C直线x=2 D直线x=2【回顾11】(2010、,3分)已知二次函数的图象如图l242所示,则在“ a0,b0,c 0,b24ac0”中,正确的判断是( )A、 B、 C、 D、【回顾12】(2010、,3分)已知二次函数(a0)的图象如图 1243所示,则下列结论:a、b同号;当x=1和x=3时,函数值相等;4a+b=0;当y=2
39、时,x的值只能取0其中正确的个数是( ) Al个 B2个 C3个 D4个【回顾13】(2010、,4分)如图l244,抛物线的顶点P的坐标是(1,3),则此抛物线对应的二次函数有() A最大值1 B最小值3 C最大值3 D最小值1【回顾14】(2010、,3分)用列表法画二次函数的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y所对应的值依次为:20,56,110,182,274,380,506,650其中有一个值不正确,这个不正确的值是( ) A506 B380 C274 D182【回顾15】(2010、)将二次函数y=x24x+ 6化为 y=(xh)2+k的形式:y=_【
40、回顾16】(2010、,5分)在直角坐标系xoy中O是坐标原点,抛物线y=x2x6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,如图l245,如果点M在y轴右侧的抛物线上,SAMO= SCOE,那么点M的坐标是_-【回顾17】(2010、衡州,5分)把二次函数y=x24x+5化成y=(xh)2+k的形式:y=_【回顾18】(2010、)若二次函数y=x24x+c的图象与x轴没有交点,其中c为整数,则c=_(只要求写一个)【回顾19】(2010、,3分)抛物线y=(x1)2+3的顶点坐标是_【回顾20】(2010、)已知点P (a,m)和 Q(0,m)是抛物线y=2x2+4x3上的两个不同点,则a+b=_.【回顾21】(2010、嘉峪关)二次函数y=x22x3与x轴两交点之间的距离为_.【回顾22】(2010、嘉峪关)如图l246,已知两点A(1,0),B(4,0)在x轴上,以AB为直径的半圆P交y轴于点C(1)求经过 A、B、C三点的抛物线的解析式;(2)设AC的垂直平分线交OC于D,连结AD并延长AD交半圆P于点E, 相等吗?(3)设点M为x轴负半轴上一点,OM=AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的表达式;若不存在,请说明 理由.【回顾23】(2010、,10分) 如图1247,