《2022年九级数学上册周测练习题新人教版1.pdf》由会员分享,可在线阅读,更多相关《2022年九级数学上册周测练习题新人教版1.pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 1 页 共 7 页2016-2017学年度第一学期九年级数学周测练习题12.2姓名: _班级: _得分: _一 选择题:1. 下列说法正确的有几个()经过三个点一定可以作圆;任意一个圆一定有内接三角形,并且只有一个内接三角形;任意一个三角形一定有一个外接圆并且只有一个外接圆;垂直于弦的直径必平分弦;经过不在同一直线上的四个点一定可以作圆A.3B.2C.1D.02. 如图,在平面直角坐标系xOy 中,ABC顶点的横、纵坐标都是整数若将ABC 以某点为旋转中心,顺时针旋转 90得到 DEF ,则旋转中心的坐标是()A.(0,0 )B.(1,0 )C.(1, 1)D.(2.5,0.5 )第 2
2、题图第 3 题图第 4 题图3. 如图, 正三角形ABC内接于圆 O,动点 P在圆周的劣弧AB上, 且不与A,B 重合, 则BPC 等于()A.30B.60C.90D.454. 如图, ABC 内接于 O ,OBC=40 ,则A的度数为()A.80B.100C.110D.1305. 如 图, 在O 的内接四边形ABCD 中,AB 是直径, BCD=120 ,过D点的切线 PD与直线 AB交于点 P,则 ADP的度数为()A.40B.35C.30D.45第 5 题图第 6 题图6. 如图, 正方形ABCD 的边长为 6,点 E,F 分别在 AB ,AD上,若 CE=3,且 ECF=45 , 则C
3、F长为()A.2B.3C.D.精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 7 页 - - - - - - - - - - 第 2 页 共 7 页7. 如图,在正方形ABCD 中,E 是 BC的中点,F是 CD上的一点, AE EF ,下列结论: BAE=30 ; CE2=AB?CF ;CF=FD ;ABE AEF 其中正确的有()A.1 个B.2 个C.3 个D.4 个8. 如图所示, 半径为 1 的圆和边长为1 的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为 t
4、 ,正方形除去圆部分的面积为S(阴影部分),则S与 t 的大致图象为()A.B.C.D.9. 如图,正六边形的边长为,半径是1 的O 从与 AB相切于点D的位置出发,在正六边形外部按顺时针方向沿正六边形滚动,又回到与 AB相切于点 D的位置,则O自转了()A.4 周B.5 周C.6 周D.7 周第 9 题图第 10 题图第 11 题图10. 如图, 一个半径为r 的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.D.11. 如图,AB 是O 的直径,M 是O 上一点 ,MN AB,垂足为N, P、Q分别是弧AM 、 弧
5、BM上一点(不与端点重合) 若MNP= MNQ. 下面结论:PNA= QNB ;P+Q=180 ; Q= PMN ;PM=QM;MN2=PN ?QN 正确的结论有()A.2 个B.3 个C.4 个D.5 个精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 7 页 - - - - - - - - - - 第 3 页 共 7 页12. 如图所示,已知 ABC 中,BC=8 ,BC 上的高 h=4,D 为 BC上一点, EF BC ,交AB于点 E,交 AC于点 F(EF不过 A、B),设 E到 BC
6、的距离为 x则DEF的面积 y 关于 x 的函数的图象大致为()A.B.C.D.二 填空题:13. 两个相似多边形相似比为1:2, 且它们的周长和为90,则这两个相似多边形的周长分别是,14. 如图,点 P是? ABCD 边 AB上的一点,射线CP交 DA的延长线于点E,则图中相似的三角形有_对第 14 题图第 15 题图第 16 题图15. 如图, 点 E在正方形 ABCD 的边 CD上, 把ADE绕点 A顺时针旋转90至 ABF 位置, 如果 AB=, EAD=30 ,那么点 E与点 F 之间的距离等于16. 小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏图中ABC外接圆的圆心坐标是 _17
7、. 在 RtABC中,C=90 ,AC=5 ,BC=12 ,若以C点为圆心、r 为半径所作的圆与斜边AB只有一个公共点,则 r 的范围是第 17 题图第 18 题图第 19 题图18. 如图,正方形ABCD中,E 为 AB的中点, AF DE 于点 O ,则=_ .19. 如图,在 RtABC中,ABC=90 ,AB=BC=,将ABC绕点 C逆时针旋转60,得到 MNC ,连接BM ,则BM的长是_20. 如图, 一块直角三角板ABC的斜边 AB与量角器的直径恰好重合,点 D对应的刻度是58,则ACD的度数为_精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载
8、 名师归纳 - - - - - - - - - -第 3 页,共 7 页 - - - - - - - - - - 第 4 页 共 7 页21. 如图,正三角形ABC的边长为 4,D、E、F 分别为 BC 、CA 、AB 的中点,以A、B、C 三点为圆心,2为半径作圆,则图中的阴影面积为第 21 题图第 22 题图22. 如图,平面直角坐标系中,分别以点A(2,3),B(3,4)为圆心,以1、2 为半径作 A、B,M 、N 分别是 A、B上的动点,P为 x 轴上的动点,则PM+PN 的最小值等于三 简答题:23. 如图,正方形网格中,为格点三角形(即三角形的顶点都在格点上)(1)把沿方向平移后,
9、点移到点,在网格中画出平移后的;(2)把绕点按逆时针旋转,在网格中画出旋转后的;(3)如果网格中小正方形的边长为, 求点经过(1)、(2)变换的路径总长.24. 如图是一个转盘,(转盘被等分成四个扇形),上面标有红黄蓝三种颜色,小明和小强做游戏,规定:转到红色,小明赢,转到黄色,小强赢(若转到分界线,再重转一次)(1)小颖认为转盘上共有三种不同的颜色,所以,指针停在红色、黄色或蓝色区域的概率都是,他们的游戏对小明和小强都是公平的,你认为呢?请说明理由(2)若你认为游戏不公平,请你设计一种方案,使他们的游戏公平精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载
10、名师归纳 - - - - - - - - - -第 4 页,共 7 页 - - - - - - - - - - 第 5 页 共 7 页25. 如图,在 ABC 中,D 为 AC边上一点, DBC= A(1)求证: ACD ABC ;(2)如果BC=,AC=3 ,求 CD的长来26. 如图,AB 是O 的直径, CD 是O 的弦,AB ,CD 的延长线交于点E,已知 AB 2DE.(1) 若E=20 ,求 AOC 的度数;(2) 若E=,求 AOC 的度数27. 如图,点 B、C、D 都在O 上,过 C点作 CA BD 交 OD的延长线于点A,连接BC ,B=A=30 ,BD=2(1)求证: A
11、C 是O 的切线;(2)求由线段AC 、AD与弧 CD所围成的阴影部分的面积 . (结果保留)精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 7 页 - - - - - - - - - - 第 6 页 共 7 页28. 如图,AB 是O 的直径,C是弧 BD的中点, CE AB 于 E,BD交 CE于点 F(1)求证: CF=BF ;(2)若 CD=6,AC=8 ,则O的半径为,CE的长是29. 如图,在 ABC 中,ABC=90 ,边AC的垂直平分线交BC于点 D,交 AC于点 E,连接 B
12、E ,BE 是DEC外接圆的切线(1)求C;(2)若CD=2 ,求 BE 30. 如图,已知是的直径,点在上,过点的直线与的延长线交于点,(1)求证:是的切线;(2)求证:;(3)点是弧 AB的中点,交于点,若,求 MNMC的值精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 7 页 - - - - - - - - - - 第 7 页 共 7 页参考答案1、B.2、C3、B4、D5、C6、A7、B8、D. 9、B.10、C11、B12、D13、30,6014、315、16、(5,2)17、5r
13、12或18、19、120、6121、4222、323、(1)作图略 ; (2)作图略; (3), 弧所以总长=.24、【解答】解:( 1)游戏不公平理由如下:共有4 种等可能的结果数,其中指针停在红色的结果数为,指针停在黄色的结果数为1,指针停蓝色区域的结果数为2,所以小明赢的概率=,小强赢的概率=,所以小明赢的概率大,游戏不公平;(2)可设计为:转到蓝色,小明赢,转到黄色,小强赢(若转到分界线,再重转一次)25、(1)证明: DBC= ADCB= BACACD ABC (2)解: ACD ABC BC :AC=CD :BC BC=,AC=3 CD=2 26、解: (1) AB=2DE ,又O
14、A=OB=OC=OD,OD=OC=DE.DOE= E=20 .CDO= DOE E=40 =C.AOC= CE=60 .(2) 由(1) 可知: DOE= E=,C= ODC=2 E,AOC= CE=3 .27【解答】( 1)证明:连接OC ,交 BD于 E,B=30 ,B=COD ,COD=60 , A=30 , OCA=90 ,即OC AC ,AC 是O 的切线;(2)解: AC BD ,OCA=90 , OED= OCA=90 ,DE=BD=,sin COD=,OD=2 ,在 RtACO中,tan COA=,AC=2,S阴影=22=228、解: (1)证明: AB 是O 的直径, ACB
15、 90又CE AB , CEB 90 2=90 A=1又C 是弧 BD的中点, 1=A1=2, CF=BF(2) O 的半径为 5 , CE的长是29、【解答】解:( 1)连接OE ,BE 是DEC外接圆的切线, BEO=90 ,ABC=90 ,E是 AC的中点, BE=AE=EC= AC ,EBC= ECB ,OE=OC,OEC= OCE ,BOE=2 OCE ,即BOE=2 EBC , EBC=30 , C=30 ;(2)CD=2 ,OE=OD=OC=1,EBC=30 ,BEO=90 ,BO=2OE=2,BD=1 ,BC=3 ,由切割线定理得, BE2=BD?BC=3 ,BE=30、解:( 1),又又是的直径,即,而是的半径,是的切线(2),又,(3)连接,点是弧 AB的中点,而,MN MC=BM2,又是的直径, AM=BM,MN MC=BM2=8精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 7 页 - - - - - - - - - -