《2022年九年级数学下册262二次函数知识点总结人教新课标版 .pdf》由会员分享,可在线阅读,更多相关《2022年九年级数学下册262二次函数知识点总结人教新课标版 .pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下二次函数最全的中考知识点总结相关概念及定义?二次函数的概念:一般地, 形如2yaxbxc(abc, , 是常数,0a)的函数,叫做二次函数。 这里需要强调: 和一元二次方程类似,二次项系数0a,而 bc,可以为零二次函数的定义域是全体实数?二次函数2yaxbxc的结构特征: 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2 abc, , 是常数, a是二次项系数,b是一次项系数,c 是常数项二次函数各种形式之间的变换?二次函数cbxaxy2用配方法可化成:khxay2的形式,其中abackabh4422,. ?二次函数由特殊到一般,可分为以下几种形式:2axy;k
2、axy2;2hxay;khxay2;cbxaxy2. 二次函数解析式的表示方法?一般式:2yaxbxc( a ,b, c 为常数,0a) ;?顶点式:2()ya xhk ( a ,h,k为常数,0a) ;?两根式:12()()ya xxxx(0a,1x ,2x 是抛物线与x 轴两交点的横坐标). ?注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240bac时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化. 二次函数2yaxbxc 图象的画法?五点绘图法:利用配方法将二次函数2yaxbxc 化为顶点式2
3、()ya xhk ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与 x轴的交点10 x ,20 x ,(若与 x 轴没有交点,则取两组关于对称轴对称的点). ?画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y轴的交点. 二次函数2axy的性质二次函数2yaxc 的性质a的符号开口方向顶点坐标对称轴性质0a向上00,y轴0 x时,y随x的增大而增大;0 x时,y随x的增大而减小;0 x时,y有最小值00a向下00,y轴0 x时,y随x的增大而减小;0 x时,y随x
4、 的增大而增大;0 x时,y有最大值0精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 9 页 - - - - - - - - - - 二次函数2ya xh的性质:二次函数2ya xhk 的性质抛物线2yaxbxc的三要素:开口方向、对称轴、顶点. ?a的符号决定抛物线的开口方向:当0a时,开口向上; 当0a时,开口向下;a相等,抛物线的开口大小、形状相同. ?对称轴:平行于y轴 (或重合)的直线记作2bxa. 特别地,y轴记作直线0 x. ?顶点坐标:),(abacab4422?顶点决定抛物线
5、的位置. 几个不同的二次函数,如果二次项系数a相同, 那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 抛物线cbxaxy2中,cba,与函数图像的关系?二次项系数a二次函数2yaxbxc中, a作为二次项系数,显然0a 当0a时,抛物线开口向上,a越大,开口越小,反之a 的值越小,开口越大; 当0a时,抛物线开口向下,a越小,开口越小,反之a 的值越大,开口越大总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a 的大小决定开口的大小?一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴 在0a的前提下,当0b时,02ba,即抛物线的对称轴在y轴左侧;当0
6、b时,02ba,即抛物线的对称轴就是y轴;a 的符号开口方向顶点坐标对称轴性质0a向上0c,y轴0 x时,y随 x 的增大而增大;0 x时,y随x 的增大而减小;0 x时,y有最小值 c 0a向下0c,y轴0 x时,y随 x 的增大而减小;0 x时,y随x 的增大而增大;0 x时,y有最大值 c a 的符号开口方向顶点坐标对称轴性质0a向上0h,X=h xh时,y随 x 的增大而增大;xh时,y随 x的增大而减小;xh时,y有最小值00a向下0h,X=h xh时,y随 x 的增大而减小;xh时,y随 x的增大而增大;xh时,y有最大值0a 的符号开口方向顶点坐标对称轴性质0a向上hk,X=h
7、xh时,y随 x 的增大而增大;xh时,y随 x的增大而减小;xh时,y有最小值k0a向下hk,X=h xh时,y随 x 的增大而减小;xh时,y随 x的增大而增大;xh时,y有最大值k精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 9 页 - - - - - - - - - - 当0b时,02ba,即抛物线对称轴在y轴的右侧 在0a的前提下,结论刚好与上述相反,即当0b时,02ba,即抛物线的对称轴在y轴右侧;当0b时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在
8、y轴的左侧总结起来,在a确定的前提下,b决定了抛物线对称轴的位置总结:?常数项 c 当0c时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正; 当0c时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; 当0c时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负总结起来, c 决定了抛物线与y轴交点的位置总之,只要abc, , 都确定,那么这条抛物线就是唯一确定的求抛物线的顶点、对称轴的方法?公式法:abacabxacbxaxy442222,顶点是),(abacab4422,对称轴是直线abx2. ?配方法:运用配方的方法,将抛物线的解析式化为khxay
9、2的形式,得到顶点为 (h,k) ,对称轴是直线hx. ?运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 用待定系数法求二次函数的解析式?一般式:cbxaxy2. 已知图像上三点或三对x、y的值,通常选择一般式. ?顶点式:khxay2. 已知图像的顶点或对称轴,通常选择顶点式. ?交 点 式 : 已 知 图 像 与x轴 的 交 点 坐 标1x、2x, 通 常 选 用 交 点 式 :21xxxxay. 直线与抛物线的交点?y轴与抛物线cbxa
10、xy2得交点为 (0,c). ?与y轴 平 行 的 直 线hx与 抛 物 线cbxaxy2有 且 只 有 一 个 交 点(h,cbhah2). ?抛物线与x轴的交点 : 二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根. 抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:有两个交点0抛物线与x轴相交;有一个交点(顶点在x轴上)0抛物线与x轴相切;没有交点0抛物线与x轴相离 . ?平行于x轴的直线与抛物线的交点可能有 0 个交点、 1 个交点、 2 个交点 . 当有 2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是
11、kcbxax2的两个实数根 . 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 9 页 - - - - - - - - - - ?一次函数0knkxy的图像l与二次函数02acbxaxy的图像G的交点, 由方程组2ykxnyaxbxc的解的数目来确定:方程组有两组不同的解时l与G有两个交点 ; 方程组只有一组解时l与G只有一个交点; 方程组无解时l与G没有交点 . ?抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,xBxA,由于1x、2x是方程02cbxax的两个根
12、,故acxxabxx2121,aaacbacabxxxxxxxxAB444222122122121二次函数图象的对称: 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达?关于 x 轴对称2yaxbxc关于 x 轴对称后,得到的解析式是2yaxbxc ;2ya xhk 关于 x 轴对称后,得到的解析式是2ya xhk ;?关于y轴对称2yaxbxc关于y轴对称后,得到的解析式是2yaxbxc;2ya xhk 关于y轴对称后,得到的解析式是2ya xhk ;?关于原点对称2yaxbxc关于原点对称后,得到的解析式是2yaxbxc ;2ya xhk 关于原点对称后,得到的解析式是2ya x
13、hk ;?关于顶点对称2yaxbxc关于顶点对称后,得到的解析式是222byaxbxca;2ya xhk 关于顶点对称后,得到的解析式是2ya xhk ?关于点mn,对称2ya xhk 关于点mn,对称后,得到的解析式是222ya xhmnk?总结: 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则, 选择合适的形式, 习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式二次函数图象的平移?平移步骤: 将抛物线解
14、析式转化成顶点式2ya xhk ,确定其顶点坐标hk,; 保持抛物线2yax 的形状不变,将其顶点平移到hk,处,具体平移方法如下:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 9 页 - - - - - - - - - - ?向右(h0)【或左(h0)【或下(k0)【或左(h0)【或左(h0)【或下(k0)【或向下(k0)】平移|k|个单位y=a(x-h)2+ky=a(x-h)2y=ax2+ky=ax2平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”概括成八个字“左加右
15、减,上加下减”根据条件确定二次函数表达式的几种基本思路。?三点式。1,已知抛物线y=ax2+bx+c 经过 A(3,0) ,B(32,0) ,C(0,-3 )三点,求抛物线的解析式。2,已知抛物线y=a(x-1)+4 , 经过点 A(2,3) ,求抛物线的解析式。?顶点式。1,已知抛物线y=x2-2ax+a2+b 顶点为 A(2,1) ,求抛物线的解析式。2,已知抛物线 y=4(x+a)2-2a 的顶点为( 3,1) ,求抛物线的解析式。?交点式。1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线 y=(x-a)(x-b)的解析式。2,已知抛物线线与 x 轴两个交点( 4,
16、0) , (1,0)求抛物线y=21a(x-2a)(x-b)的解析式。?定点式。1,在直角坐标系中,不论a 取何值,抛物线2225212axaxy经过 x 轴上一定点 Q ,直线2)2(xay经过点 Q,求抛物线的解析式。2,抛物线 y= x2 +(2m-1)x-2m与 x 轴的一定交点经过直线y=mx+m+4 ,求抛物线的解析式。3,抛物线 y=ax2+ax-2 过直线 y=mx-2m+2上的定点 A,求抛物线的解析式。?平移式。1, 把抛物线y= -2x2向左平移2 个单位长度,再向下平移1 个单位长度,得到抛物线y=a( x-h)2 +k, 求此抛物线解析式。2, 抛物线32xxy向上平
17、移 , 使抛物线经过点C(0,2),求抛物线的解析式. ?距离式。1,抛物线 y=ax2+4ax+1(a 0)与 x 轴的两个交点间的距离为2,求抛物线的解析式。2,已知抛物线y=m x2+3mx-4m(m 0) 与 x 轴交于 A、B两点,与轴交于 C点,且 AB=BC,求此抛物线的解析式。?对称轴式。1、抛物线 y=x2-2x+(m2-4m+4) 与 x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的 2 倍,求抛物线的解析式。2、 已知抛物线y=-x2+ax+4, 交 x 轴于 A,B(点 A 在点 B 左边)两点,交 y轴于点C, 且OB-OA=43OC ,求此抛物线的解析式
18、。?对称式。1, 平行四边形ABCD对角线 AC在 x 轴上,且 A(-10 ,0) ,AC=16 ,D (2,6) 。AD交 y 轴于E,将三角形ABC沿 x 轴折叠, 点 B到 B1的位置, 求经过 A,B,E 三点的抛物线的解析式。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 9 页 - - - - - - - - - - 2, 求与抛物线y=x2+4x+3 关于 y 轴(或 x 轴)对称的抛物线的解析式。?切点式。1,已知直线y=ax-a2(a 0) 与抛物线 y=mx2有唯一公共点
19、,求抛物线的解析式。2, 直线 y=x+a 与抛物线 y=ax2 +k 的唯一公共点A(2,1), 求抛物线的解析式。?判别式式。1、已知关于X 的一元二次方程(m+1 )x2+2(m+1)x+2=0 有两个相等的实数根,求抛物线y=-x2+(m+1)x+3 解析式。2、 已知抛物线y=(a+2)x2-(a+1)x+2a的顶点在x 轴上 , 求抛物线的解析式。3、已知抛物线y=(m+1)x2+(m+2)x+1 与 x 轴有唯一公共点,求抛物线的解析式。一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。2.推论:平行于三角形一边的直线截其他两边(或两边的延
20、长线 )所得的对应线段成比例。3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线 )所得的对应线段成比例,那么这条线段平行于三角形的第三边。二、相似预备定理:平行于三角形的一边, 并且和其他两边相交的直线, 截得的三角形的三边与原三角形三边对应成比例。三、相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。2.性质:( 1)相似三角形的对应角相等;(2)相似三角形的对应线段 (边、高、中线、角平分线 )成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。说明:等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;要注意两个图形元素的对应。3.
21、判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 9 页 - - - - - - - - - - (4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。四、三角形相似的证题思路:五、利用相似三角形证明线段成比例的一般步骤:一“ 定” :先确定四条线段在哪两个可能相似的三角形中;二“ 找” :再找出两个三角形相似
22、所需的条件;三“ 证” :根据分析,写出证明过程。如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。六、相似与全等:全等三角形是相似比为1 的相似三角形, 即全等三角形是相似三角形的特例,它们之间的区别与联系:1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改“ 对应边相等 ” 成“ 对应边成比例 ” 。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 9 页 -
23、 - - - - - - - - - 常见考法(1)利用判定定理证明三角形相似;(2)利用三角形相似解决圆、函数的有关问题。锐角三角比tanA= 角 A 的对边 /邻边cotA= 角 A 的邻边 /对边sinA= 角 A 的对边 /斜边cosA= 角 A 的邻边 /斜边三角比值tan30= 3/3 cot30= 3 sin 30 =1/2 cos30= 3/2 tan60=3 cot60= 3/3 sin 60= 3/2 cos 60 =1/2 tan 45=1 cot45=1 sin 45= 2/2 cos 45= 2/2 ( 为根号 )精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 9 页 - - - - - - - - - - 文档编码:KDHSIBDSUFVBSUDHSIDHSIBF-SDSD587FCDCVDCJUH 欢迎下载 精美文档欢迎下载 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 9 页 - - - - - - - - - -