2022等比数列教学案.docx

上传人:h**** 文档编号:11305110 上传时间:2022-04-17 格式:DOCX 页数:17 大小:38.71KB
返回 下载 相关 举报
2022等比数列教学案.docx_第1页
第1页 / 共17页
2022等比数列教学案.docx_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022等比数列教学案.docx》由会员分享,可在线阅读,更多相关《2022等比数列教学案.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022等比数列教学案篇一:等比数列第一课时教案 等比数列的定义教案 内 容: 等比数列 教学目标:1.理解和掌握等比数列的定义; 2.理解和掌握等比数列的通项公式及其推导过程和方法; 3.运用等比数列的通项公式解决一些简单的问题。 授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。 教学难点:等比数列通项公式的探求。 教具准备:多媒体课件 教学过程: (一)复习导入 1等差数列的定义 2等差数列的通项公式及其推导方法 3.公差的确定方法. 4.问题:给出一张书写纸,你能将它对折10次吗?为什么? (二)探索新知 1引入:观察下面几个数列,看其有何共同特点? ()2,1,4,

2、7,10,13,16,19,?()8,16,32,64,128,256,? ()1,1,1,1,1,1,1,? ()1,2,4,8,16,?263 请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,?,一直进行下去,记录下每个单位时间的细胞个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列等比数列. 2等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一 项的比等于同一个常数,那

3、么这个数列就叫做等比数列,这个常数叫做等比数列 的公比;公比通常用字母q表示(q?0), 3.递推公式:an?1an?q(q?0) 对定义再引导学生讨论并强调以下问题 (1) 等比数列的首项不为0; (2)等比数列的每一项都不为0; (3)公比不为0. (4)非零常数列既是等比数列也是等差数列; 问题:一个数列各项均不为0是这个数列为等比数列的什么条件? 3等比数列的通项公式: 【傻儿子的故事】 古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了

4、,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。 第二天,这人想请一个姓万的人来家里吃饭,就让他儿子帮忙写一张请帖,他儿子从早上一直写到中午也没有写好,这人觉得奇怪,就去看看,只发现他儿子在纸上划了好多横线,就问他儿子什么意思.他儿子一边擦头上的汗一边埋怨道:“爸, 这人姓什么不好,偏偏姓万,害得我从早上到现在才划了500划!” 那么,你认为这孩子傻吗?今天,我们来运用“傻儿子”的思想方法来求等比数列的通项公式。 与等差数列相类似,我们通过观察等比数列各项之间的关系,分析、探求规律 设等比数列?an?的公比为q,则 a2?a1?q, a3?a2?q?a1?q?q?a1?q2,

5、a4?a3?q?a1?q?q?a1?q,23 ? 【说明】a1?a1? 1?a1?0q 依此类推,得到等比数列的通项公式: an?a1?qn?1. 【想一想】 等比数列的通项公式中,共有四个量:an、a1、n和q,只要知道了其中的任意三个量,就可以求出另外的一个量. 针对不同情况,应该分别采用什么样的计算方法? 【典型例子】 111例2求等比数列?1,?,? 248 的第10项 解 由于a1?1,q?, 故,数列的通项公式为 an?a1?q 所以 a10?(?1)101 210?1?1 512 1 8n?112?1?1?2?n?1?1?(?1)n?1?1?2?n?1?(?1)n?1, 2n?1

6、例3 在等比数列?an?中,a5?1,a?,求a13 1解 由a5?1,a8?有 8 ?1?a1?q4, (1) 1?a1?q7,(2) 8 (2)式的两边分别除以(1)式的两边,得 1?q3, 8 由此得 q?1 2 将q?1代人(1),得 2 a1?24, 所以,数列的通项公式为 1an?24?()n?1 2 故 1?1? a13?a1?q12?24?2?8?2256? 例4 小明、小刚和小强进行钓鱼比赛,他们三人钓鱼的数量恰好组成一个等比数列已知他们三人一共钓了14条鱼,而每个人钓鱼数量的积为64 并且知道,小强钓的鱼最多,小明钓的鱼最少,问他们三人各钓了多少条鱼? 分析 知道三个数构成

7、等比数列,并且知道这三个数的积,可以将这三个数a设为,a,aq,这样可以方便地求出a,从而解决问题. q a解 设小明、小刚和小强钓鱼的数量分别为,a,aq则 q12 ?a?q?a?aq?14,? ? a?a?aq?64.?q 解得 a?4,?a?4,?或?1 q?.?q?2,?2? 当q?2时 a4?2,aq?4?2?8, q2 此时三个人钓鱼的条数分别为2、4、8. 当q?1时 2 a41?8,aq?4?2, q12 2 此时三个人钓鱼的条数分别为8、4、2. 由于小明钓的鱼最少,小强钓的鱼最多,故小明钓了2条 a将构成等比数列的三个数设为,,a,aq是经常使用的方法。 q 【四、课堂练习

8、】 21.求等比数列,2,6,?.的通项公式与第7项 3 2.在等比数列?an?中,a2? 是,请指出是第几项 1,a5?5, 判断?125是否为数列中的项,如果25 【五、课时小结】 1.等比数列的定义 2.等比数列的递推公式 3.等比数列的通项公式及运用 【六、课后作业】 习题:2、3、4 篇二:等比数列教案设计 等比数列教学设计 一、教学内容概述 本节课属于人教版教材高中数学必修5第2章第四节“等比数列”的内容,该内容分二个课时,本节课是第一课时,内容是“等比数列”. 本节内容先由师生共同分析日常生活中的实际问题来引出等比数列的概念,再由教师引导学生与等差数列类比探索等比数列的通项公式,

9、并将等比数列的通项公式与指数函数进行联系,体会等比数列与指数函数的关系,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程. 学生已在前几节课程中学习过了数列的概念,等差数列和等差数列的求和,有了这些基础更便于学生理解和学习等比数列的内容。 在学生以往所做的习题数与数之间的关系的填空,也有利于引出等比数列知识,使得本节课的内容更加通俗易懂。 等比数列在生活中应用十分广泛,体现在生物科学、经济、金融数学等中,应用等比数列的数学模型,可以更好地刻画现实世界中的数量关系,借此可培养学生数学建模的思想和数学应用的意识. 二、学生学情分析 1、从高二学生的

10、学习特点来看 (1)知识基础方面.之前已经学习过“等差数列”的内容,对数列已经有了初步的认识,在此基础上研究讨论等比数列对后继学习产生积极影响.学生可以将等比数列相类比到等差数列中,理解等比数列的通项和其性质,为学生探索等比数列的性质提供了思维活动空间,进而掌握研究数列性质的一般方法,提升分析问题、解决问题的能力.但在如何求复杂等比数列或者隐含等比数列的通项有一定挑战难度。 (2)思维水平方面.学生已经学习了高中数学必修1-4,具有一定水平的思维,空间想象能力,对数字特征特点性质具有一定的观察概括能力,对于知识点之间的类比推理也有一定程度学习,对于学习等比数列的内容会比较容易。但在学习如何转变

11、各种复杂公式求出通项的问题还是得具有一定的知识积累。 (3)心理特点方面.。高中学生善于控制自己,学习意志力较高。能够控制和约束自己 的行动,控制不需要的想法和情绪,使思想集中到学习上来。 (4)学习态度方面.要使学生积极而高效的掌握知识,必须在教学过程中关注学生的兴趣、动机、情感、气质、意志、品德等非智力因素所形成的学习态度.它们比学生的智力水平和知识本身更重要.适当的给予鼓励和评价,培养乐于探索、勇于探索的精神. 三、教学目标设计 1.知识与技能 (1)使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。 (2)正确认识使用的表示法,能灵

12、活运用通项公式求的首项、公比、项数及指定的项 2.过程与方法 (1)培养运用归纳类比的方法发现问题并解决问题的能力及运用方程的思想的计算能力。 (2)采用观察、思考、类比、归纳、探究、得出结论的方法进行教学 (3)发挥学生的主体作用,作好探究性活动 (4)密切联系实际,激发学生学习的积极性. 3.情感、态度与价值观 (1)培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。 (2)通过生活中的大量实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力; (3)通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的

13、兴趣. 四、教学重难点设计 1.教学重点:教学重点是的定义和对通项公式的认识与应用。 【设计依据】与等差数列一样,也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出的特性,这些是教学的重点. 2.教学难点:教学难点 在于通项公式的推导和运用. 【设计依据】虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明, 所以通项公式的推导是难点.对等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点. 五、教学策略设计 1、教学传递策略 教学传递策略涉及要使用的教学

14、媒体、教学方法和学生的分组,具体说就是教学媒体教学方法的选择和教学组织形式的合理选用。采用PPT形式先给学生展示几个生活中有关等比数列的实列,比如细胞分裂,和银行的利息计算等,将本节课的主要学习内容传递给学生,引入内容。 2、弹性预设和动态生成的教学策略的应用 重视课堂教学“弹性预设和动态生成”的过程,使教育活动过程焕发生命的活力.设计中体现“学情预设”环节,给整个教学留下弹性的空间,对学生可能出现的反应作出预测.一个开放性强的设问,让学生发散思维大胆猜想,提升能力.对于不同的公比,等比数列的形式,以及等比数列运用到方程,不等式上的形式,以及等比数列的多种表达形式。 六、教学过程设计 问题1:

15、给出以下几组数列,将它们分类,说出分类标准. 2,1,4,7,10,13,16,19,? 8,16,32,64,128,256,? 1,1,1,1,1,1,1,? 243,81,27,9,3,1, , ,? 31,29,27,25,23,21,19,? 1,1,1,1,1,1,1,1,? 1,10,101,1010,10100,101000,? 0,0,0,0,0,0,0,? (由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中为有共同性质的一类数列(学生看不出的情况也无妨,得出定义后再考察是否为等比数列) 【设计意

16、图】通过分类归纳的过程,引入等比数列的内容,使得学生对等比数列有初步的理解。 问题2:细胞分裂的个数也是与我们上述提出的问题类似的实例.细胞分裂有什么规律,将每次分裂后细胞的个数写成一个数列,你能写出这个数列吗? (教师观察学生写的内容,看其是否能正确写对数列,并展示) 【设计意图】在写这个等比数列的过程,使学生感受到等比数列的现实生活意义。 问题3:计算机病毒传播问题. 一种计算机病毒,可以查找计算机中的地址簿,通过邮件进行传播.如果把病毒制造者发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么在不重复的情况下,这种病毒感染的计算机数构

17、成一个什么样的数列呢? (通过两个问题,助于学生理解) 【设计意图】在写这个等比数列的过程,使学生理解等比数列的结构性质。 问题4:回忆数列的等差关系和等差数列的定义,观察上面问题2,3的数列,说说它们有什么共同特点? 【设计意图】。引导学生类比等差关系和等差数列的概念,发现等比关系. 问题5:我们已经学习过等差数列的通项公式,那么你们现在尝试一下写出等比数列的通项公式 (教师观察学生写的内容,并且指出错误,更正学生理解) 【设计意图】强化学生自主学习和归纳推理能力。 问题6:请同学就所学知识尝试填以下表格 (教师让学生先自主填表,最后统一讲解) 【设计意图】强化学生探索类比所学知识的能力。

18、问题7:设ak,al,am,an是等比数列中的第k、l、m、n项,若k+l=m+n,求证:ak*al=am*an 【设计意图】这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积 问题8:已知an是等比数列,a2=2,a5=,则公比q=( ) 【设计意图】巩固学生对公比等基础知识的理解 问题9:已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值是( ) 【设计意图】考察学生是否已经理解了等比数列的性质,并进行运用 问题10:等比数列an中a4,a8是方程x+3x+2=0的两根,则a5a6

19、a7=( ) 【设计意图】等比数列与方程的运用结合,加深理解 2 问题11:在2和30之间插入两个正数,使前三个成为等比数列,后三个成等差数列,则这两个正数之和是_ 【设计意图】加强学生对等差数列等比数列的混合运用 问题12:等比数列an的首项a1=1,前n项和为Sn,若 _ ,则公比q等于 篇三:等比数列教学设计 等比数列教学设计 邢台一中 黄彦芳 【教学内容及内容分析】 等比数列是高中课程标准实验教科书数学(必修5)第二章第四节的内容。 数列是高中数学重要内容之一,它不仅有着广泛的应用,如储蓄、分期付款的有关计算会用到等比数列前n项和的一些知识,而且起着承前启后的作用数列作为一种特殊的函数

20、与前面学到的函数思想密不可分,另外也为后面进一步学习数列的极限等内容做好准备。 在数列的学习中,等差数列和等比数列是两种最重要的数列模型,并且等差数列与等比数列在内容上是完全平行的,包括定义、性质、通项公式、前n项和的公式、两个数的等差(比)中项、两种数列在函数角度下的解释等,因此在教学时可用对比方法,以便于弄清它们之间的联系与区别。 【学情分析】教学对象是进入高中不久的学生,他们具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃,敏捷,但缺乏冷静、深刻,因此片面、不严谨。 从学生的思维特点看,很容易把本节内容与等差数列的学习过程作对比,这是一种积极因素

21、,应充分利用。但相比等差数列,等比数列中要注意的地方更多,比如说:等比数列的公比不能为零,等比数列的各项都不能为零等,这些细节学生容易忽略,通过本节课的学习,增强学生思维的严谨性。 【教学方法及设计意图】新课程改革纲要提出:“要改变课程实施过于强调接受学习,死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力”。 针对这一目标,这节课做了如下设计: (1)通过一个“折纸游戏”让学生从感性上认识等比数列,借助丰富的实例,使得学生加深对等比数列的认识。最终,通过学生的观察、分析、探讨得出等比数列的概念。并且借助这一过程使学生认识到数学本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第17页 共17页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页第 17 页 共 17 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁