《2022年等比数列教学设计 .pdf》由会员分享,可在线阅读,更多相关《2022年等比数列教学设计 .pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、优质资料欢迎下载等比数列教学设计(共 2 课时)成都航天中学刘杨勇一、 教材分析 :1、 内容简析:本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、 银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。2、 教学目标确定:从知识结构来看, 本节核心内容是等比数列的概念及通项公式,可从等比数列的 “等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要注意“比”的特性。在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用
2、的性质。从而可以确定如下教学目标(三维目标):第一课时:(1)理解等比数列的概念,掌握等比数列的通项公式及公式的推导(2)在教学过程中渗透方程、函数、 特殊到一般等数学思想,提高学生观察、 归纳、猜想、证明等逻辑思维能力(3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识第二课时:( 1)加深对等比数列概念理解,灵活运用等比数列的定义及通项公式,了解等比中项概念,掌握等比数列的性质( 2)运用等比数列的定义及通项公式解决问题,增强学生的应用3、教学重点与难点:第一课时:重点:等比数列的定义及通项公式难点:应用等比数列的定义及通项公式,解决相关简单问题第二课时:重点:等比中项的理解与运
3、用,及等比数列定义及通项公式的应用难点:灵活应用等比数列的定义及通项公式、性质解决相关问题二、 学情分析 :从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不能解决,存在疑问。 本课正是由此入手来引发学生的认知冲突,产生求知的欲望。 而矛盾解决的关键依然依赖于学生原有的认知结构在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式。高一学生正处于从初中到高中的过度阶段,对数学思想和方法的认识还不够,思维能力比较欠缺, 他们重视具体问题的运算而轻视对问题的抽象分析。同时
4、, 高一阶段又是学生形成良好的思维能力的关键时期。因此,本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。多数学生愿意积极参与,积极思考, 表现自我。所以教师可以把尽可能多的时间、空间让给学生, 让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。这也体现了教学工作中学生的主体作用。三、 教法选择与学法指导:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页优质资料欢迎下载由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比数列的相关知识。 在深
5、刻理解等差数列与等比数列的区别与联系的基础上,牢固掌握数列的相关知识。因此,在教法和学法上可做如下考虑:1、教法:采用问题启发与比较探究式相结合的教学方法教法构思如下:提出问题作用于原来的认知结构引发认知冲突析在原有认知的基础上分观察分析在特殊情况下归纳概括一般情况下得出结论例题和练习总结提高。在教师的精心组织下, 对学生各种能力进行培养,并以促进学生发展,又以学生的发展带动其学习。同时,它也能促进学生学会如何学习,因而特别有利于培养学生的探索能力。2、学法指导:学生学习的目的在于学会学习、思考,达到创新的目的,掌握科学有效的学习方法,可增强学生的学习信心,培养其学习兴趣,提高学习效率, 从而
6、激发强烈的学习积极性。我考虑从以下几方面来进行学法指导:(1)把隐含在教材中的思想方法显化。如等比数列通项公式的推导体现了从特殊到一般的方法。 其通项公式11nnqaa是以 n 为字变量的函数,可利用函数思想来解决数列有关问题。思想方法的显化对提高学生数学修养有帮助。(2)注重从科学方法论的高度指导学生的学习。通过提问、分析、解答、总结,培养学生发现问题、分析问题、解决问题的能力。训练逻辑思维的严密性和深刻性的目的。四、 教学过程设计:第一课时1、创设情境,提出问题(阅读本章引言并打出幻灯片)情境 1:本章引言内容提出问题:同学们,国王有能力满足发明者的要求吗?引导学生写出各个格子里的麦粒数依
7、次为:1,2,,2,2,2432,632(1)于是发明者要求的麦粒总数是情境 2:某人从银行贷款10000 元人民币,年利率为r ,若此人一年后还款,二年后还款,三年后还款,还款数额依次满足什么规律?10000(1+r),100002)1 (r,100003)1(r, (2)情境 3:将长度为1 米的木棒取其一半,将所得的一半再取其一半,再将所得的木棒继续取其一半,各次取得的木棒长度依次为多少?,81,41,21(3)问:你能算出第7 次取一半后的长度是多少吗?观察、归纳、猜想得7)21(2、自主探究,找出规律:学生对数列( 1),(2),(3)分析讨论,发现共同特点:从第二项起,每一项与前一
8、项的比都等于同一常数。也就是说这些数列从第二项起, 每一项与前一项的比都具有“相等”的特点。于是得到等比数列的定义:一般地,如果一个数列从第二项起, 每一项与它的前一项的比等于同一个常23631+ 2+2 +2 +2精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页优质资料欢迎下载数,那么这个数列叫做等比数列。这个常数叫做等比数列的公比,公比常用字母q)0(q表示,即1:(,2,0)nnaaq nN nq。如数列( 1),( 2),( 3)都是等比数列,它们的公比依次是2,1+r,21点评:等比数列与等差数列仅一字之差,对比知从 第
9、二项起 ,每一项与前一项之“差”为常数,则为等差数列,之“ 比”为常数 ,则为等比数列,此常数称为“公差”或“公比”。3、观察判断,分析总结:观察以下数列,判断它是否为等比数列,若是,找出公比,若不是,说出理由,然后回答下面问题:1,3,9,27,,81,41,21, 11,-2,4,-8,-1,-1,-1 ,-1,1,0,1,0,思考:公比 q 能为 0 吗?为什么?首项能为0 吗?公比1q是什么数列?0q数列递增吗?0q数列递减吗?等比数列的定义也恰好给出了等比数列的递推关系式:这一递推式正是我们证明等比数列的重要工具。选题分析;因为等差数列公差d可以取任意实数,所以学生对公比q往往忘却它
10、不能取0 和能取 1 的特殊情况,以致于在不为具体数字(即为字母运算)时不会讨论以上两种情况,故给出问题以揭示学生对公比q有防患意识,问题是让学生明白0q时等比数列的单调性不定,而0q时数列为摆动数列,要注意与等差数列的区别。备选题:已知Rx则,32xxxnx,成等比数列的从要条件是什么?4、观察猜想,求通项:方法 1:由定义知道,3134212312qaqaaqaqaaqaa归纳得:等比数列的通项公式为:11nnqaa)(Nn(说明:推得结论的这一方法称为归纳法 ,不是公式的证明,要想对这一方式的结论给出严格的证明,需在学习数学归纳法后完成, 现阶段我们只承认它是正确的就可以了)方法 2:迭
11、代法根据等比数列的定义有23123nnnnaaqaqaq2121nnaqaq精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 6 页优质资料欢迎下载方法 3:由递推关系式或定义写出:,342312qaaqaaqaaqaann1,通过观察发现342312aaaaaaqqqaann11nqq11nnqaa,即:11nnqaa)(Nn(此证明方法称为“ 累商法 ”,在以后的数列证明中有重要应用)公式11nnqaa)(Nn的特征及结构分析:(1) 公式中有四个基本量:naqna,1,可“知三求一”,体现方程思想。(2)1a的下标与的1nq上标之和
12、nn) 1(1,恰是na的下标,即 q的指数比项数少 1。5、问题探究:通项公式的应用例、已知数列na是等比数列,64,283aa,求14a的值。备选题:已知数列na满足条件:nnpa)54(,且2544a。求8a的值6、课堂演练:教材138 页 1、2 题备选题 1:已知数列na为等比数列,45,106431aaaa,求4a的值备选题 2:公差不为 0 的等差数列na中,632,aaa依次成等比数列,则公比等于7、归纳总结:(1)等比数列的定义,即11nnaqa)0(q(2)等比数列的通项公式11nnqaa)(Nn及推导过程。8、课后作业:必作:教材 138 页练习 4;习题 1(2)(4)
13、2、3、4、5 选作: 1、已知数列na为等比数列,且1231237,8aaaa a a,求na 2、已知数列na满足111,21nnaaa(1)求证:1na是等比数列;。(2)求na的通项na。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 6 页优质资料欢迎下载第二课时1、复习回顾 :上节课,我们学习了(打出幻灯片)(1) 等比数列定义:1:(,2,0)nnaaq nN nq(2) 通项公式:11nnqaa(,0)nNq(3)若11nnanan,数列na是等比数列吗?111()nnnaan对不对?(注意:考虑公比 q 为常数)2、尝
14、试练习 :在等比数列na中(1)2418,8aa,求1,a q(2)514215,6,aaaa求na(3)在 2 与8 之间插入一个数A,使 2,A,8 成等比数列,求 A (鼓励学生尝试用不同的方法求解,相互讨论分析不同的解法,然后归纳出等比数列的性质)3、性质探究 :(1)若 a,G,b 成等比数列,则2Gab有,称 G为 a,b 的等比中项,即Gab (ab与 同号);思考:2a是谁的等比中项?3a呢?na呢?总结归纳得到性质( 2)(2)211(2)nnnaaan逆向思考:若数列na满足211(2)nnnaaan,它一定是等比数列吗?(3)若 mnpq ,则(, ,mnpqaaaam
15、n p q为正整数)(4)(, ,)n mnmaaqnm n mN4、灵活运用 :下面我们来看应用等比数列性质可以解决那些问题。例1、 在等比数列na中,35100aa,求4a变式 1、等比数列na中,若262,162aa,则10a变式 2、等比数列na中,若7125aa,则891011aaaa精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 6 页优质资料欢迎下载变式 3、等比数列na中,若1231237,8aaaaaa,则na例2、 已知数列,nnab是项数相同的等比数列,求证:nnab是等比数列。变式 1、已知数列,nnab是项数相
16、同的等比数列,问数列nnab是等比数列吗?变式2、已知数列na是等比数列,若取出所有偶数项组成一个新数列,此数列还是等比数列吗?若是,它的首项和公比分别为多少?变式 3、已知数列na是等比数列,若取出102030,aaa组成一个新数列,此数列还是等比数列吗?若是,它的首项和公比分别为多少?变式 4、已知数列na是等比数列,若每一项乘以非零常数C 组成一个新数列,此数列还是等比数列吗?若是,它的首项和公比分别为多少?(通过上述问题的讨论求解,归纳、总结、推广得出等比数列的一些性质)例3、 三个数成等比数列,它们的和为14,它们的积为 64,求这三个数。备选题、有四个数,前三个数成等比数列,其和为
17、19,后三个数成等差数列,其和为12,求这四个数。5、课堂演练:教材 138 页 3、4、5 备选题:已知数列na为等比数列,且2435460,225naa aa aa a则35aa备选题:有四个数,前三个数成等比数列,后三个数成等差数列,首末两项和为21,中间两项的和为 18,求这四个数。6、归纳总结 :(1)等比中项的概念(2)等比数列有关性质7、课后作业:必作:教材 139 页习题 6、7、10、11 选作:1、在数列,nnab中,0,0nnab,且1,nnnab a成等差数列,11,nnnbab成等比数列,1121,2,3aba,求:nnab的值。2、设2xy,且,yxy x y x yx能按某种顺序构成等比数列,求这个等比数列。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 6 页