《2025八年级上册数数学(RJ)13.3.2 第1课时 等边三角形的性质与判定2.doc》由会员分享,可在线阅读,更多相关《2025八年级上册数数学(RJ)13.3.2 第1课时 等边三角形的性质与判定2.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2025八年级上册数数学(RJ)13.3.2 第1课时 等边三角形的性质与判定213.3.2 等边三角形第课时 等边三角形的性质和判定 教学目的1 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。2 熟识等边三角形的性质及判定 2通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。 教学重点: 等腰三角形的性质及其应用。 教学难点: 简洁的逻辑推理。 教学过程 一、复习巩固 1叙述等腰三角形的性质,它是怎么得到的? 等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以BC。
2、等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD CD,AD为底边上的中线;BADCAD,AD为顶角平分线,ADBADC90,AD又为底边上的高,因此“三线合一”。 2若等腰三角形的两边长为3和4,则其周长为多少? 二、新课 在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。 等边三角形具有什么性质呢? 1请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。 2你能否用已知的知识,通过推理得到你的猜想是正确的? 等边三角形是特殊的等腰三角形,由等
3、腰三角形等边对等角的性质得到ABC,又由ABC180,从而推出ABC60。 3上面的条件和结论如何叙述? 等边三角形的各角都相等,并且每一个角都等于60。 等边三角形是轴对称图形吗?如果是,有几条对称轴? 等边三角形也称为正三角形。 例1在ABC中,ABAC,D是BC边上的中点,B30,求1和ADC的度数。 分析:由ABAC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是ABC的顶角平分线,底边上的高,从而ADC90,lBAC,由于CB30,BAC可求,所以1可求。 问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变
4、,计算的结果是否一样? 问题2:求1是否还有其它方法? 三、练习巩固 1判断下列命题,对的打“”,错的打“”。 a.等腰三角形的角平分线,中线和高互相重合( ) b有一个角是60的等腰三角形,其它两个内角也为60( )2如图(2),在ABC中,已知ABAC,AD为BAC的平分线,且225,求ADB和B的度数。 四、小结 由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。 五、作业: 第2课时含30角的直角三角形的性质1理解并掌握含30角的直角三角形的性质定理(重点)2能
5、灵活运用含30角的直角三角形的性质定理解决有关问题(难点)一、情境导入问题:1我们学习过直角三角形,直角三角形的角之间都有什么数量关系?2用你的30角的直角三角尺,把斜边和30角所对的直角边量一量,你有什么发现?今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质二、合作探究探究点:含30角的直角三角形的性质【类型一】 利用含30角的直角三角形的性质求线段长 如图,在RtABC中,ACB90,B30,CD是斜边AB上的高,AD3cm,则AB的长度是()A3cm B6cm C9cm D12cm解析:在RtABC中,CD是斜边AB上的高,ADC90,ACDB30.在RtACD中,AC2AD
6、6cm,在RtABC中,AB2AC12cm.AB的长度是12cm.故选D.方法总结:运用含30角的直角三角形的性质求线段长时,要分清线段所在的直角三角形【类型二】 与角平分线或垂直平分线性质的综合运用 如图,AOPBOP15,PCOA交OB于C,PDOA于D,若PC3,则PD等于()A3 B2 C1.5 D1解析:如图,过点P作PEOB于E,PCOA,AOPCPO,PCEBOPCPOBOPAOPAOB30.又PC3,PEPC31.5.AOPBOP,PDOA,PDPE1.5.故选C.方法总结:含30角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30角的直角三角形【类
7、型三】 利用含30角的直角三角形的性质探究线段之间的倍、分关系 如图,在ABC中,C90,AD是BAC的平分线,过点D作DEAB.DE恰好是ADB的平分线CD与DB有怎样的数量关系?请说明理由解析:由条件先证AEDBED,得出BADCADB,求得B30,即可得到CDDB.解:CDDB.理由如下:DEAB,AEDBED90.DE是ADB的平分线,ADEBDE.又DEDE,AEDBED(ASA),ADBD,DAEB.BADCADBAC,BADCADB.BADCADB90,BBADCAD30.在RtACD中,CAD30,CDADBD,即CDDB.方法总结:含30角的直角三角形的性质是表示线段倍分关系
8、的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质【类型四】 利用含30角的直角三角形解决实际问题 某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC50m,AB40m,BAC150,这种草皮每平方米的售价是a元,求购买这种草皮至少需要多少元?解析:作BDCA交CA的延长线于点D.在RtABD中,利用30角所对的直角边是斜边的一半求BD,即ABC的高运用三角形面积公式计算面积求解解:如图所示,作BDCA于D点BAC150,DAB30.AB40m,BDAB20m,SABC5020500(m2)已知这种草皮每平方米a元,所以一共需要500a元方法总结:解此题的关键在于作出CA边上的高,根据相关的性质推出高BD的长度,正确的计算出ABC的面积三、板书设计含30角的直角三角形的性质性质:在直角三角形中,如果一个锐角是30,那么它所对的直角边等于斜边的一半本节课借助于教学活动的开展,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,促进了学生思维能力的提高不足之处是部分学生的综合运用知识解决问题的能力还有待于在今后的教学和作业中进行进一步的训练和提高