高一数学变量间的相关关系(课堂PPT).ppt

上传人:胜**** 文档编号:98023196 上传时间:2024-07-09 格式:PPT 页数:43 大小:518.50KB
返回 下载 相关 举报
高一数学变量间的相关关系(课堂PPT).ppt_第1页
第1页 / 共43页
高一数学变量间的相关关系(课堂PPT).ppt_第2页
第2页 / 共43页
点击查看更多>>
资源描述

《高一数学变量间的相关关系(课堂PPT).ppt》由会员分享,可在线阅读,更多相关《高一数学变量间的相关关系(课堂PPT).ppt(43页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.3.1-21小明小明,你数学成绩不太好你数学成绩不太好,物理怎么样物理怎么样?也不太好啊也不太好啊.学不好数学学不好数学,物理物理也是学不好的也是学不好的?.2哲学原理哲学原理:世界是一个普遍联系的整体,:世界是一个普遍联系的整体,任何事物都与任何事物都与周围周围其它事物相联系。其它事物相联系。数学地理解世界3你认为老师的说法对吗你认为老师的说法对吗?事实上事实上,我们在考察数学成绩对物理成绩影响的同时我们在考察数学成绩对物理成绩影响的同时,还还必须考虑到其他的因素必须考虑到其他的因素:爱好爱好,努力程度努力程度 如果单纯从数学对物理的影响来考虑如果单纯从数学对物理的影响来考虑,就是考虑这

2、两者之就是考虑这两者之间的间的相关关系相关关系我们在生活中我们在生活中,碰到很多相关关系的问题碰到很多相关关系的问题:数学数学成绩成绩学习学习兴趣兴趣花费花费时间时间其他其他因素因素4商品销售收入商品销售收入广告支出经费广告支出经费?粮食产量粮食产量施肥量施肥量?人体脂肪含量人体脂肪含量年龄年龄?5 1商品销售收入与广告支出经费之间的关系。商品销售收入与广告支出经费之间的关系。商品销售收入与广告支出经费之间有着密切的联系,商品销售收入与广告支出经费之间有着密切的联系,但商品收入不仅与广告支出多少有关,还与但商品收入不仅与广告支出多少有关,还与商品质商品质量量、居民收入居民收入等因素有关。等因素

3、有关。6 在一定范围内,施肥量越大,粮食产量就越高。在一定范围内,施肥量越大,粮食产量就越高。但是,施肥量并不是决定粮食产量的唯一因素,但是,施肥量并不是决定粮食产量的唯一因素,因为粮食产量还要受到因为粮食产量还要受到土壤质量土壤质量、降雨量降雨量、田田间管理水平等间管理水平等因素的影响。因素的影响。2粮食产量与施肥量之间的关系。粮食产量与施肥量之间的关系。7 在一定年龄段内,随着年龄的增长,人体内在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还的脂肪含量会增加,但人体内的脂肪含量还与与饮食习惯饮食习惯、体育锻炼体育锻炼等有关,可能还与个等有关,可能还与个人的先天体

4、质有关。人的先天体质有关。3人体内脂肪含量与年龄之间的关系。人体内脂肪含量与年龄之间的关系。8以上种种问题中的以上种种问题中的两个变量之间两个变量之间的的相关关系相关关系,我我们都可以根据自己的生活们都可以根据自己的生活,学习经验作出相应的学习经验作出相应的判断判断,“规律是经验的总结规律是经验的总结”,不管你多有经验不管你多有经验,只凭经验办事只凭经验办事,还是很容易出错的还是很容易出错的,因此在寻找因此在寻找变量间的相关关系时变量间的相关关系时,我们需要一些更为科学的我们需要一些更为科学的方法来说明问题方法来说明问题.在寻找变量间的相关关系时在寻找变量间的相关关系时,统计统计同样发挥了非常

5、重同样发挥了非常重要的作用要的作用,我们是通过收集大量的数据我们是通过收集大量的数据,对数据进行统对数据进行统计分析的基础上计分析的基础上,发现其中的规律发现其中的规律,才能对它们之间的才能对它们之间的关系作出判断关系作出判断.91 1、两个变量之间的相关关系、两个变量之间的相关关系 两个变量间存在着某种关系,带两个变量间存在着某种关系,带有不确定性有不确定性(随机性),随机性),不能用函数不能用函数关系精确关系精确地表达出来,我们说这两个地表达出来,我们说这两个变量具有变量具有相关关系相关关系.10相关关系相关关系当自变量取值一定当自变量取值一定,因变量的因变量的取值带有一定的取值带有一定的

6、随机性随机性(非确定性关系非确定性关系)函数关系函数关系-函数关系指的是自变量和因函数关系指的是自变量和因变量之间的关系是变量之间的关系是相互唯一确定相互唯一确定的的.注:相关关系和函数关系的异同点注:相关关系和函数关系的异同点相同点相同点:两者均是指两个变量间的关系:两者均是指两个变量间的关系不同点不同点:函数关系是一种确定关系,:函数关系是一种确定关系,相关关系是一种非确定的关系。相关关系是一种非确定的关系。对相关关系的理解对相关关系的理解111:下列两变量中具有相关关系的是(:下列两变量中具有相关关系的是()A角度和它的余弦值角度和它的余弦值 B正方形的边长和面积正方形的边长和面积C成人

7、的身高和视力成人的身高和视力 D 身高和体重身高和体重D练习:练习:12【问题问题】在一次对人体脂肪含量和年龄关系在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数脂肪含量的样本平均数.年龄年龄 2323272739394141454549495050脂肪脂肪 9.59.517.817.8 21.221.2 25.925.9 27.527.5 26.326.3 28.228.2年龄年龄 5353545456565757585860606161脂

8、肪脂肪 29.629.6 30.230.2 31.431.4 30.830.8 33.533.5 35.235.2 34.634.6根据上述数据,根据上述数据,人体的脂肪含量与年龄之间人体的脂肪含量与年龄之间有怎样的关系有怎样的关系?13思考思考1 1:对对某一个人某一个人来说,来说,他的体内脂肪含他的体内脂肪含量不一定随年龄增长而增加或减少量不一定随年龄增长而增加或减少,但是如,但是如果把很果把很多个多个体放在一起,就可能表现出一定体放在一起,就可能表现出一定的的规律性规律性.观察上表中的数据,大体上看,观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?随着年龄的增加,人体脂

9、肪含量怎样变化?年龄年龄 2323272739394141454549495050脂肪脂肪 9.59.517.817.8 21.221.2 25.925.9 27.527.5 26.326.3 28.228.2年龄年龄 5353545456565757585860606161脂肪脂肪 29.629.6 30.230.2 31.431.4 30.830.8 33.533.5 35.235.2 34.634.614思考思考2 2:为了确定年龄和人体脂肪含量之间的为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关

10、系有一个通过作图可以对两个变量之间的关系有一个直观的印象直观的印象.以以x x轴表示年龄,轴表示年龄,y y轴表示脂肪含轴表示脂肪含量,量,你能在直角坐标系中描出样本数据对应你能在直角坐标系中描出样本数据对应的图形吗?的图形吗?年龄年龄 2323272739394141454549495050脂肪脂肪 9.59.517.817.8 21.221.2 25.925.9 27.527.5 26.326.3 28.228.2年龄年龄 5353545456565757585860606161脂肪脂肪 29.629.6 30.230.2 31.431.4 30.830.8 33.533.5 35.235

11、.2 34.634.615思考思考3 3:上图叫做上图叫做散点图散点图,你能描述一下散,你能描述一下散点图的含义吗?点图的含义吗?在平面直角坐标系中,表示具有相关关系在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图的两个变量的一组数据图形,称为散点图.16散点图散点图3).3).如果所有的样本点都落在某一如果所有的样本点都落在某一直线附近直线附近,变量之间就有变量之间就有线性相关关系线性相关关系 .1).1).如果所有的样本点都落在某一如果所有的样本点都落在某一函数曲线上函数曲线上,就用该函数来描述变量之间的关系,即变量之就用该函数来描述变量之间的关系,即变量之间具有间

12、具有函数关系函数关系2).2).如果所有的样本点都落在某一如果所有的样本点都落在某一函数曲线附近函数曲线附近,变量之间就有变量之间就有相关关系相关关系。说明说明散点图散点图:用来判断两个变量是否具有相关关系用来判断两个变量是否具有相关关系.17观察散点图的大致趋势,观察散点图的大致趋势,两个变量的两个变量的散点图散点图中中点的分布的位置是点的分布的位置是从左下角到右上角从左下角到右上角的区域,我的区域,我们称这种相关关系为们称这种相关关系为正相关。正相关。18思考思考4 4:如果两个变量成如果两个变量成负相关负相关,从整体上看这两,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?个变量

13、的变化趋势如何?其散点图有什么特点?散点图中的点散布在从左上角到右下角的区域散点图中的点散布在从左上角到右下角的区域.思考思考5 5:你能列举一些生活中的变量成正你能列举一些生活中的变量成正相关或负相关的实例吗相关或负相关的实例吗?19如高原含氧量与海拔高度如高原含氧量与海拔高度的相关关系,海平面以上,的相关关系,海平面以上,海拔高度越高,含氧量越海拔高度越高,含氧量越少。少。作出散点图发现,它们散作出散点图发现,它们散布在从左上角到右下角的区布在从左上角到右下角的区域内。又如汽车的载重和汽域内。又如汽车的载重和汽车每消耗车每消耗1升汽油所行使的升汽油所行使的平均路程,称它们成平均路程,称它们

14、成负相关负相关.O202.下列关系属于负相关关系的是(下列关系属于负相关关系的是()A.父母的身高与子女的身高父母的身高与子女的身高B.农作物产量与施肥的关系农作物产量与施肥的关系C.吸烟与健康的关系吸烟与健康的关系D.数学成绩与物理成绩的关系数学成绩与物理成绩的关系C C练习:练习:21如果散点图中点的分布如果散点图中点的分布从从整体整体上看上看大致在一条直大致在一条直线附近,我们就称这两个变量之间具有线附近,我们就称这两个变量之间具有线性相关线性相关关系关系,这条直线就叫做,这条直线就叫做回归直线回归直线。这条回归直线的方程这条回归直线的方程,简称为,简称为回归方程回归方程。三、回归直线三

15、、回归直线 221.如果所有的如果所有的样本点都落在某一函数曲线上样本点都落在某一函数曲线上,变,变量之间具有量之间具有函数函数关系关系2.如果所有的样本点都落在某一函数如果所有的样本点都落在某一函数曲线附近曲线附近,变量之间就有变量之间就有相关关系相关关系3.如果所有的样本点都落在如果所有的样本点都落在某一直线附近某一直线附近,变量,变量之间就有线性相关关系之间就有线性相关关系 只有散点图中的点呈条状集中在只有散点图中的点呈条状集中在某一直线某一直线周围的时候,才可以说两个变量之间具有线性周围的时候,才可以说两个变量之间具有线性关系,才有两个变量的正线性相关和负线性相关系,才有两个变量的正线

16、性相关和负线性相关的概念,才可以用回归直线来描述两个变量关的概念,才可以用回归直线来描述两个变量之间的关系之间的关系23整体上最接近整体上最接近 方案一:方案一:采用测量的方法:先画一条直线,测采用测量的方法:先画一条直线,测量出各点到它的距离,然后移动直线,到达一量出各点到它的距离,然后移动直线,到达一个使距离之和最小的位置,测量出此时直线的个使距离之和最小的位置,测量出此时直线的斜率和截距,就得到回归方程。斜率和截距,就得到回归方程。四、如何具体的求出这个回归方程呢?四、如何具体的求出这个回归方程呢?24方案二方案二:在图中选取两点画直线,使得直线在图中选取两点画直线,使得直线两侧的点的个

17、数基本相同。两侧的点的个数基本相同。三、如何具体的求出这个回归方程呢?三、如何具体的求出这个回归方程呢?25方案三方案三:在散点图中多取几组点,确定几条直线的在散点图中多取几组点,确定几条直线的方程,分别求出各条直线的斜率和截距的平均数,方程,分别求出各条直线的斜率和截距的平均数,将这两个平均数作为回归方程的斜率和截距。将这两个平均数作为回归方程的斜率和截距。三、如何具体的求出这个回归方程呢?三、如何具体的求出这个回归方程呢?26上述三种方案均有一定的道理,但可靠性不强,上述三种方案均有一定的道理,但可靠性不强,我们回到回归直线的我们回到回归直线的定义定义。求回归方程的关键是如何用求回归方程的

18、关键是如何用数学的方法数学的方法来刻画来刻画“从整体上看,各点与直线的偏差最小从整体上看,各点与直线的偏差最小”。如果如果散点图中点散点图中点的分布的分布从从整体整体上看上看大致在一条直线附近,大致在一条直线附近,我们就称这两个变量之间具有我们就称这两个变量之间具有线性相关关系线性相关关系,这条直线,这条直线就叫做就叫做回归直线回归直线。思考思考6 6:对一组具有线性相关关系的样本数据:对一组具有线性相关关系的样本数据:(x(x1 1,y y1 1),(x(x2 2,y y2 2),(x(xn n,y yn n),设其回归方,设其回归方程为程为 可以用哪些数量关系来刻画各样可以用哪些数量关系来

19、刻画各样本点与回归直线的接近程度?本点与回归直线的接近程度?27回归直线回归直线 实际上实际上,求回归直线的关键是求回归直线的关键是如何用数学的方如何用数学的方法来刻画法来刻画“从整体上看从整体上看,各点到此直线的距离最小各点到此直线的距离最小”.28这样的方法叫做最小二乘法这样的方法叫做最小二乘法.29人们经过长期的实践与研究,已经找到了人们经过长期的实践与研究,已经找到了计算回归方程的斜率与截距的一般公式计算回归方程的斜率与截距的一般公式:以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法最小二乘法。30思考思考7 7:利用利用计算

20、器或计算机计算器或计算机可求得年龄和可求得年龄和人体脂肪含量的样本数据的回归方程为人体脂肪含量的样本数据的回归方程为 ,由此我们可以根据,由此我们可以根据一个人的年龄预测其体内脂肪含量的百分一个人的年龄预测其体内脂肪含量的百分比的比的回归值回归值.若某人若某人6565岁,则其体内脂肪含岁,则其体内脂肪含量的百分比量的百分比约约为多少?为多少?37.1(0.57765-0.448=37.1)31若某人若某人6565岁,可预测他体内脂肪含量在岁,可预测他体内脂肪含量在37.137.1(0.57765-0.448=37.10.57765-0.448=37.1)附近的)附近的可能性比较可能性比较大大。

21、但但不能不能说他体内脂肪含量说他体内脂肪含量一定一定是是37.137.1原因原因:线性回归方程中的:线性回归方程中的截距截距和和斜率斜率都是通过样都是通过样本本估计的估计的,存在随机误差,存在随机误差,这种误差可以导致预测这种误差可以导致预测结果的结果的偏差偏差,即使截距斜率没有误差,也不可能百,即使截距斜率没有误差,也不可能百分百地保证对应于分百地保证对应于x x,预报值,预报值Y Y能等于实际值能等于实际值y y32例例3 3:有一个同学家开了一个小卖部,他为了研究:有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出气温对热饮销售的影响,经过统计,得到一个卖

22、出的热饮杯数与当天气温的对比表:的热饮杯数与当天气温的对比表:1 1、画出散点图;、画出散点图;2 2、从散点图中发现气温与热饮、从散点图中发现气温与热饮销售杯数之间关系的一般规律;销售杯数之间关系的一般规律;3 3、求回归方程;、求回归方程;4 4、如果某天的气温是、如果某天的气温是2 2摄氏度,摄氏度,预测这天卖出的热饮杯数。预测这天卖出的热饮杯数。331、散点图、散点图2 2、从图、从图3-13-1看到,各点散布在从看到,各点散布在从左上角到由下角左上角到由下角的的区域里,因此,气温与热饮销售杯数之间成区域里,因此,气温与热饮销售杯数之间成负相关负相关,即即气温越高,卖出去的热饮杯数越少

23、。气温越高,卖出去的热饮杯数越少。3 3、从散点图可以看出,这些点大致分布在一条直、从散点图可以看出,这些点大致分布在一条直线的附近,因此线的附近,因此利用公式求出回归方程的系数利用公式求出回归方程的系数。Y=-2.352x+147.767Y=-2.352x+147.7674 4、当、当x=2x=2时,时,Y=143.063 Y=143.063 因此,某天的气温为因此,某天的气温为2 2摄氏度时,这天摄氏度时,这天大约可以卖出大约可以卖出143143杯热饮杯热饮。34小结小结1.1.求样本数据的线性回归方程,可按求样本数据的线性回归方程,可按下列步骤进行:下列步骤进行:第一步,列表计算平均数第

24、一步,列表计算平均数 ,第二步,求和第二步,求和,第三步,计算第三步,计算 第四步,写出回归方程第四步,写出回归方程 35总结总结基础知识框图表解基础知识框图表解变量间关系变量间关系函数关系函数关系相关关系相关关系 散点图散点图线形回归线形回归线形回归方程线形回归方程361 1、相关关系、相关关系 (1 1)概念:自变量取值一定时,因变量的取值带有一)概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系。定随机性的两个变量之间的关系叫相关关系。(2 2)相关关系与函数关系的异同点。)相关关系与函数关系的异同点。相同点:两者均是指两个变量间的关系。相同点:两者均是指两

25、个变量间的关系。不同点:函数关系是一种确定关系,是一种因果系;不同点:函数关系是一种确定关系,是一种因果系;相关关系是一种非确定的关系,也不一定是因果关系(但相关关系是一种非确定的关系,也不一定是因果关系(但可能是伴随关系)。可能是伴随关系)。(3 3)相关关系的分析方向。)相关关系的分析方向。在收集在收集大量数据的基础上,利用统计分析,发现规律,大量数据的基础上,利用统计分析,发现规律,对它们的关系作出判断。对它们的关系作出判断。372、两个变量的线性相关、两个变量的线性相关 (1 1)回归分析)回归分析 对具有相关关系的两个变量进行统计分析的方法叫回对具有相关关系的两个变量进行统计分析的方

26、法叫回归分析归分析。通俗地讲,。通俗地讲,回归分析回归分析是是寻找相关关系中非确定寻找相关关系中非确定关系的某种确定性。关系的某种确定性。(2 2)散点图)散点图 A A、定义;、定义;B B、正相关、负相关。、正相关、负相关。3 3、回归直线方程、回归直线方程 注注:如果关于两个变量统计数据的散点图呈现发散状如果关于两个变量统计数据的散点图呈现发散状,则则这两个变量之间不具有相关关系这两个变量之间不具有相关关系.383 3、回归直线方程、回归直线方程 (1 1)回归直线:观察散点图的特征,如果各点大致分)回归直线:观察散点图的特征,如果各点大致分布在一条直线的附近,就称两个变量之间具有线性相

27、关的布在一条直线的附近,就称两个变量之间具有线性相关的关系,这条直线叫做回归直线。关系,这条直线叫做回归直线。(2 2)最小二乘法)最小二乘法(3)(3)利用回归直线对总体进行估计利用回归直线对总体进行估计39变式:(广东高考)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x吨与相应的生产能耗y(吨标准煤)的几组对照数据。x2345y2.5344.5(1)请画出上表数据的散点图。(2)根据上表数据用最小二乘法求出y关于x的线性回归方程(3)由(2)预测技改后生产100吨甲产品的生产能耗是多少吨标准煤?(参考数值:2*2.5+3*3+4*4+5*4.5=52.5)40解 (1)由题设所给数据,可得散点图如图.41(2)对照数据由最小二乘法确定的回归方程的系数为:=3.5-0.73.5=1.05.因此,所求的线性回归方程为 =0.7x+1.05.42(3)当x=100时;所以技改后生产100吨甲产品的生产能耗是71.05吨标准煤43

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁