《专题02 方程的解与函数的零点问题(学生版).docx》由会员分享,可在线阅读,更多相关《专题02 方程的解与函数的零点问题(学生版).docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 专题02 方程的根与函数的零点问题 一、 方程的根与函数的零点问题知识框架 二、函数零点存在性判断 1、函数零点存在性判断:(此定理只能判断出零点存在,不能确定零点的个数)若函数yf(x)在闭区间a,b上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)f(b)0,则在区间(a,b)内,函数yf(x)至少有一个零点,即相应方程f(x)0在区间(a,b)内至少有一个实数解2、求函数零点所在区间的方法:(1)解方程法:当对应方程f(x)0易解时,可先解方程,再看解得的根是否落在给定区间上(2)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断1. 例题【例1】设f(
2、x)ln xx2,则函数f(x)的零点所在的区间为()来源:学科网A(0,1) B(1,2) C(2,3) D(3,4)【例2】函数yln(x1)与y的图象交点的横坐标所在区间为()A(0,1)B(1,2) C(2,3) D(3,4)【例3】函数()的导函数的图象如图所示:来源:(1)求的值并写出的单调区间;(2)若函数有三个零点,求的取值范围2.巩固提升综合练习【练习1】函数f(x)3x7ln x的零点位于区间(n,n1)(nN)内,则n_【练习2】若abc,则函数f(x)(xa)(xb)(xb)(xc)(xc)(xa)的两个零点分别位于区间()A(a,b)和(b,c) B(,a)和(a,b
3、) C(b,c)和(c,) D(,a)和(c,)【练习3】已知函数.(1)证明:,;(2)判断的零点个数,并给出证明过程. 三、方程的根与函数零点个数 1、方程的根与函数零点的关系:函数yf(x)有零点 方程f(x)0有实数根 函数yf(x)的图象与函数y0(即x轴)有交点2、求方程的根与函数零点个数的方法:(1)解方程法:令f(x)0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理法:利用定理不仅要求函数在区间a,b上是连续不断的曲线,且f(a)f(b)0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质(3)数形结合法:转
4、化为两个函数的图象的交点个数问题先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点1.例题【例1】已知函数f(x)满足f(0)1,且f(0)2f(1)0,那么函数g(x)f(x)x的零点个数为_【例2】函数的零点个数为()A1B2C3 D4【例3】已知函数 . (1)求在处的切线方程;(2)试判断在区间上有没有零点?若有则判断零点的个数.2.巩固提升综合练习【练习1】已知函数f(x)函数g(x)3f(2x),则函数yf(x)g(x)的零点个数为()A2B3C4 D5【练习2】若定义在R上的偶函数f(x)满足f(x2)f(x),且当x0,1时,f(x)x,则
5、函数yf(x)log3|x|的零点个数是_【练习3】已知函数(,)(1)若在上单调递减,求的取值范围;(2)当时,判断关于的方程的解的个数【练习4】已知函数.()求函数在区间上的最小值;()判断函数在区间上零点的个数. 四、利用函数的零点求参数范围 已知函数有零点(方程有根)求参数取值范围常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解1.例题【例1】已知方程|x2a|x20(a0)有两个不等的实数根,则
6、实数a的取值范围是()A(0,4)B(4,) C(0,2)D(2,)【例2】已知是定义在R上且周期为3的函数,当x0,3)时,若函数在区间3,4上有10个零点(互不相同),则实数a的取值范围是_【例3】已知函数(1)求曲线在点处的切线方程;(2)若函数恰有2个零点,求实数的取值范围.2.巩固提升综合练习【练习1】若函数f(x)ax2x1有且仅有一个零点,则实数a的取值为()A0B C0或D2【练习2】已知函数,若实数是方程的解,且,则的值为()A恒为负 B等于零 C恒为正 D不小于零【练习3】已知xR,符号x表示不超过x的最大整数,若函数f(x)a(x0)有且仅有3个零点,则a的取值范围是()
7、A B C D【练习4】【2018年理数全国卷II】已知函数(1)若,证明:当时,;(2)若在只有一个零点,求【练习5】 11.已知函数,. ()当时,求的单调区间和极值;()若关于的方程恰有两个不等实根,求实数的取值范围;五、 课后自我检测 1已知函数,在下列区间中,包含零点的区间是()A(0,1)B(1,2)C(2,4) D(4,)2方程的根所在的区间为()A(0,1) B(1,2)C(2,3) D(3,4)3设a1,a2,a3均为正数,123,则函数f(x)的两个零点分别位于区间()A(,1)和(1,2)内B(1,2)和(2,3)内C(2,3)和(3,)内D(,1)和(3,)内6已知函数,则函数的零点为()A,0B2,0C D07已知函数f(x)若函数g(x)f(x)m有3个零点,则实数m的取值范围是_8已知函数f(x)有三个不同的零点,则实数a的取值范围是_9.已知函数的两个零点为(1)求实数m的取值范围;(2)求证:10、已知函数.(1)当时,求证:;(2)讨论函数零点的个数.11.【2017课标1,理21】已知函数.(1)讨论的单调性;(2)若有两个零点,求a的取值范围.12.已知函数f(x)=.(1)当a为何值时,x轴为曲线 的切线;(2)用 表示m,n中的最小值,设函数 ,讨论h(x)零点的个数.