《2025版新高考版高考总复习数学离散型随机变量及其分布列、均值、方差(十年高考).docx》由会员分享,可在线阅读,更多相关《2025版新高考版高考总复习数学离散型随机变量及其分布列、均值、方差(十年高考).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2025版新高考版高考总复习数学11.2离散型随机变量及其分布列、均值、方差考点离散型随机变量及其分布列、均值与方差1.(2020课标理,3,5分)在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且i=14pi=1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.2答案B根据均值E(X)=i=14xipi,方差D(X)=i=14xi-E(X)2pi以及方差与标准差的关系,得各选项对应样本的标准差如下表.选
2、项均值E(X)方差D(X)标准差D(X)A2.50.650.65B2.51.851.85C2.51.051.05D2.51.451.45由此可知选项B对应样本的标准差最大,故选B.2.(2018浙江,7,4分)设0p1,随机变量的分布列是012P1p212p2则当p在(0,1)内增大时,()A.D()减小B.D()增大C.D()先减小后增大D.D()先增大后减小答案D本小题考查随机变量的分布列,期望、方差的计算及函数的单调性.由题意得E()=01p2+112+2p2=12+p,D()=012+p21p2+112+p212+212+p2p2=18(1+2p)2(1-p)+(1-2p)2+(3-2
3、p)2p=-p2+p+14=-p122+12.由01p21,0p21,1p2+12+p2=1,得0pE(X),所以小明应选择先回答B类问题.方法总结求解离散型随机变量的数学期望的一般步骤:1.判断取值:即判断随机变量的所有可能取值及取每个值所表示的意义;2.探求概率:利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;3.写出分布列:按规定形式写出分布列,注意检验所求的分布列或事件的概率是否正确;4.求期望值:利用离散型随机变量的数学期望的定义求其期望值.7.(2022北京,18,13分,应用性)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50 m以上(含9.5
4、0 m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望EX;(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要
5、求证明)解析 (1)甲以往参加的10次比赛中,有4次比赛成绩达到获得优秀奖的标准,则甲得优秀奖的概率P=410=25.(2)随机变量X的所有可能取值为0,1,2,3,设甲、乙、丙获得优秀奖分别为事件A,B,C,则A,B,C,A,B,C相互独立,且P(A)=25,P(B)=P(C)=12,P(A)=1-P(A)=1-25=35,P(B)=P(C)=12,则P(X=0)=P(ABC)=P(A)P(B)P(C)=351212=320;P(X=1)=P(ABC)+P(ABC)+P(ABC)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=251212+351212+351
6、212=820=25;P(X=2)=P(ABC)+P(ABC)+P(ABC)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=251212+251212+351212=720;P(X=3)=P(ABC)=P(A)P(B)P(C)=251212=110.故X的数学期望EX=0320+125+2720+3110=75.(3)丙.详解:乙夺冠的概率为P(乙)=1691034+164512+163512+1631012+161512=1348,丙夺冠的概率为P(丙)=14+144556=512,甲夺冠的概率为P(甲)=1-5121348=516,P(丙)最大,所以丙夺冠的
7、概率最大.8.(2018北京理,17,12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“k=1”表示第k类电影得到人们喜欢,“k=0”
8、表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D1,D2,D3,D4,D5,D6的大小关系.解析(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000,第四类电影中获得好评的电影部数是2000.25=50.故所求概率是502 000=0.025.(2)设事件A为“从第四类电影中随机选出的电影获得好评”,事件B为“从第五类电影中随机选出的电影获得好评”.故所求概率为P(AB+AB)=P(AB)+P(AB)=P(A)(1-P(B)+(1-P(A)P(B).由题意知:P(A)估计为0.25,P(B)估计为0.2.故所求概率估计为0.250
9、.8+0.750.2=0.35.(3)D1D4D2=D5D3D6.解后反思古典概型的概率以及方差的求解:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)先分清基本事件的总数n与事件A中包含的结果数m,再利用公式P(A)=mn求出事件A发生的概率.在求方差时,要学会判断随机变量是不是服从特殊分布,若服从,则利用特殊分布的方差公式求解.9.(2017课标理,18,12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高
10、气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解析本题考查随机变量的分布列,数学期望.(1
11、)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)=2+1690=0.2,P(X=300)=3690=0.4,P(X=500)=25+7+490=0.4.因此X的分布列为X200300500P0.20.40.4 (2)由题意知,这种酸奶一天的需求量至多为500瓶,至少为200瓶,因此只需考虑200n500.当300n500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间20,25),则Y=6300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6200+2(n-200)-4n=800-2n.因此EY=2n0.4+(1 20
12、0-2n)0.4+(800-2n)0.2=640-0.4n.当200n300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6200+2(n-200)-4n=800-2n.因此EY=2n(0.4+0.4)+(800-2n)0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.10.(2017天津理,16,13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求
13、这2辆车共遇到1个红灯的概率.解析本小题主要考查离散型随机变量的分布列与数学期望,事件的相互独立性,互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.(1)随机变量X的所有可能取值为0,1,2,3.P(X=0)=112113114=14,P(X=1)=121-131-14+1-12131-14+11211314=1124,P(X=2)=1121314+1211314+1213114=14,P(X=3)=121314=124.所以,随机变量X的分布列为X0123P14112414124随机变量X的数学期望E(X)=014+11124+214+3124=1312.(2)设Y
14、表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=141124+112414=1148.所以,这2辆车共遇到1个红灯的概率为1148.技巧点拔解决随机变量分布列问题的关键是正确求出随机变量可以取哪些值以及取各个值时对应的概率,只有正确理解随机变量取值的意义才能解决这个问题,理解随机变量取值的意义是解决这类问题的必要前提.11.(2016天津理,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这
15、10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.解析(1)由已知,有P(A)=C31C41+C32C102=13.所以,事件A发生的概率为13.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C32+C32+C42C102=415,P(X=1)=C31C31+C31C41C102=715,P(X=2)=C31C41C102=415.所以,随机变量X的分布列为X012P415715415随机变量X的数学期望E(X)=0415+171
16、5+2415=1.评析本题主要考查古典概型及其概率计算公式,互斥事件、离散型随机变量的分布列与数学期望等基础知识.考查运用概率知识解决简单实际问题的能力.12.(2015天津理,16,13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.解析(1)由已知,有P(A)=C22C32+C
17、32C32C84=635.所以,事件A发生的概率为635.(2)随机变量X的所有可能取值为1,2,3,4.P(X=k)=C5kC34kC84(k=1,2,3,4).所以,随机变量X的分布列为X1234P1143737114随机变量X的数学期望E(X)=1114+237+337+4114=52.评析本题主要考查古典概型及其概率计算公式,互斥事件,离散型随机变量的分布列与数学期望等基础知识.考查运用概率知识解决简单实际问题的能力.属中等难度题.13.(2015四川理,17,12分)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学
18、生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.解析(1)由题意,参加集训的男、女生各有6名.参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为C33C43C63C63=1100.因此,A中学至少有1名学生入选代表队的概率为1-1100=99100.(2)根据题意,X的可能取值为1,2,3.P(X=1)=C31C33C64=15,P(X=2)=C32C32C64=35,P(X=3
19、)=C33C31C64=15.所以X的分布列为X123P153515因此,X的数学期望为E(X)=1P(X=1)+2P(X=2)+3P(X=3)=115+235+315=2.评析本题主要考查随机事件的概率、古典概型、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查运用概率与统计的知识与方法分析和解决实际问题的能力.14.(2015安徽理,17,12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品
20、需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).解析(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,P(A)=A21A31A52=310.(2)X的可能取值为200,300,400.P(X=200)=A22A52=110,P(X=300)=A33+C21C31A22A53=310,P(X=400)=1-P(X=200)-P(X=300)=1-110-310=610.故X的分布列为X200300400P110310610EX=200110+300310+400610=350.15.(2015福建理,16
21、,13分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.解析(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=564534=12.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=16,P(X=2)=5615=16,P(X=3)=56451=
22、23,所以X的分布列为X123P161623所以E(X)=116+216+323=52.评析本小题主要考查古典概型、相互独立事件的概率、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查必然与或然思想.16.(2013课标理,19,12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质
23、品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.解析(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=
24、416116+11612=364.(2)X可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X的分布列为X400500800P111611614EX=4001116+500116+80014=506.25.17.(2016课标,19,12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用
25、期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(Xn)0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解析(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16、17、18、19、20、21、22,P(X=16)=0.20.2=0.04;
26、P(X=17)=20.20.4=0.16;P(X=18)=20.20.2+0.40.4=0.24;P(X=19)=20.20.2+20.40.2=0.24;P(X=20)=20.20.4+0.20.2=0.2;P(X=21)=20.20.2=0.08;P(X=22)=0.20.2=0.04.(4分)所以X的分布列为X16171819202122P0.040.160.240.240.20.080.04(6分)(2)由(1)知P(X18)=0.44,P(X19)=0.68,故n的最小值为19.(8分)(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=192000.68+(19200+500)0.2+(19200+2500)0.08+(19200+3500)0.04=4 040.(10分)当n=20时,EY=202000.88+(20200+500)0.08+(20200+2500)0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.(12分)思路分析(1)确定X的可能取值,分别求其对应的概率,进而可列出分布列.(2)根据(1)中求得的概率可得P(X18)以及P(X19)的值,由此即可确定n的最小值.(3)求出n=19,n=20时的期望值,比较大小即可作出决策.