《数学第三章 导数及其应用 3.2.2 导数与函数的极值、最值 文 北师大版.ppt》由会员分享,可在线阅读,更多相关《数学第三章 导数及其应用 3.2.2 导数与函数的极值、最值 文 北师大版.ppt(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第2课时导数与函数的极值、最值考点一用导数研究函数的极值(多维探究)命题角度一根据函数图像判断极值【例11】设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图像如图所示,则下列结论中一定成立的是()A函数f(x)有极大值f(2)和极小值f(1)B函数f(x)有极大值f(2)和极小值f(1)C函数f(x)有极大值f(2)和极小值f(2)D函数f(x)有极大值f(2)和极小值f(2)解析由题图可知,当x3,此时f(x)0;当2x1时,01x3,此时f(x)0;当1x2时,11x0,此时f(x)2时,1x0,由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值答案D
2、命题角度二求函数的极值【例12】求函数f(x)xaln x(aR)的极值规律方法(1)求函数f(x)极值的步骤:确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;列表检验f(x)在f(x)0的根x0左右两侧值的符号如果左正右负,那么f(x)在x0处取极大值;如果左负右正,那么f(x)在x0处取极小值(2)可导函数yf(x)在点x0处取得极值的充要条件是f(x0)0,且在x0左侧与右侧f(x)的符号不同应注意,导数为零的点不一定是极值点对含参数的求极值问题,应注意分类讨论【训练1】设函数f(x)ax32x2xc(a0)(1)当a1,且函数图像过(0,1)时,求函数的极
3、小值;(2)若f(x)在R上无极值点,求a的取值范围考点二利用导数求函数的最值【例2】(2017郑州模拟)已知函数f(x)(xk)ex.(1)求f(x)的单调区间;(2)求f(x)在区间0,1上的最小值规律方法求函数f(x)在a,b上的最大值和最小值的步骤:(1)求函数在(a,b)内的极值;(2)求函数在区间端点的函数值f(a),f(b);(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.规律方法(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论(3)求函数在无
4、穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图像,然后借助图像观察得到函数的最值【训练3】(2017衡水中学月考)已知函数f(x)ax1ln x(aR)(1)讨论函数f(x)在定义域内的极值点的个数;(2)若函数f(x)在x1处取得极值,任意x(0,),f(x)bx2恒成立,求实数b的最大值思想方法1利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分2求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小3可导函数yf(x)在点x0处取得极值的充要条件是f(x0)0,且在x0左侧与右侧f(x)的符号不同.4.若函数yf(x)在区间(a,b)内有极值,那么yf(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值 易错防范1求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能2求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论3解题时要注意区分求单调性和已知单调性的问题,处理好f(x)0时的情况;区分极值点和导数为0的点.