2022-2023学年七年级数学下册举一反三系列专题9.2 乘法公式【九大题型】(举一反三)(苏科版)含解析.docx

上传人:学****享 文档编号:97112916 上传时间:2024-04-20 格式:DOCX 页数:78 大小:568.91KB
返回 下载 相关 举报
2022-2023学年七年级数学下册举一反三系列专题9.2 乘法公式【九大题型】(举一反三)(苏科版)含解析.docx_第1页
第1页 / 共78页
2022-2023学年七年级数学下册举一反三系列专题9.2 乘法公式【九大题型】(举一反三)(苏科版)含解析.docx_第2页
第2页 / 共78页
点击查看更多>>
资源描述

《2022-2023学年七年级数学下册举一反三系列专题9.2 乘法公式【九大题型】(举一反三)(苏科版)含解析.docx》由会员分享,可在线阅读,更多相关《2022-2023学年七年级数学下册举一反三系列专题9.2 乘法公式【九大题型】(举一反三)(苏科版)含解析.docx(78页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022-2023学年七年级数学下册举一反三系列专题9.2 乘法公式【九大题型】【苏科版】【题型1 乘法公式的基本运算】1【题型2 利用完全平方式确定系数】2【题型3 乘法公式的运算】2【题型4 利用乘法公式求值】3【题型5 利用面积法验证乘法公式】3【题型6 乘法公式的应用】4【题型7 平方差公式、完全平方公式的几何背景】5【题型8 整式乘法中的新定义问题】8【题型9 整式乘法中的规律探究】9【知识点1 乘法公式】平方差公式:(a+b)(a-b)=a2-b2。两个数的和与这两个数的差的积,等于这两个数的平方差。这个公式叫做平方差公式。完全平方公式:(a+b)2=a2+2ab+b2,(a-b)

2、2=a2-2ab+b2。两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。这两个公式叫做完全平方公式。【题型1 乘法公式的基本运算】【例1】(2022春青川县期末)下列各式中计算正确的是()A(a+2b)(a2b)a22b2B(a+2b)(a2b)a24b2C(a2b)(a2b)a2+4b2D(a2b)(a+2b)a24b2【变式1-1】(2022春六盘水期中)下列各式中能用平方差公式计算的是()A(x+2y)(x2y)B(3x5y)(3x5y)C(15m)(5m1)D(a+b)(b+a)【变式1-2】(2022春巴中期末)下列运算正确的是()A(x+y)(yx)x2y2

3、B(x+y)2x2+2xy+y2C(xy)2x22xyy2D(x+y)(y+x)x2y2【变式1-3】(2022秋天心区校级期中)下列各式中,能用完全平方公式计算的是()A(ab)(ba)B(n2m2)(m2+n2)C(12p+q)(q+12p)D(2x3y)(2x+3y)【题型2 利用完全平方式确定系数】【例2】(2022秋望城区期末)若二项式x2+4加上一个单项式后成为一个完全平方式,则这样的单项式共有()A1个B2个C3个D5个【变式2-1】(2022南通模拟)如果多项式x2+2x+k是完全平方式,则常数k的值为()A1B1C4D4【变式2-2】(2022秋青县期末)若9x2(K1)x+

4、1是关于x的完全平方式,则常数K的值为()A0B5或7C7D9【变式2-3】(2022秋崇川区校级月考)(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成()AabcB(ab)2+(bc)20CcabDabc【题型3 乘法公式的运算】【例3】(2022春龙胜县期中)计算:(1152)(1162)(1172)(11992)(111002)的结果是()A101200B101125C101100D1100【变式3-1】(2022秋碾子山区期末)先化简,再求值:(2xy)(y+2x)(2y+x)(2yx),其中x1,y2【变式3-2】(2022春乳

5、山市期末)用乘法公式进行计算:(1)2019220182020;(2)112+1366+392【变式3-3】(2022春顺德区校级月考)计算:(2+1)(22+1)(24+1)(264+1)【题型4 利用乘法公式求值】【例4】(2022秋九龙坡区校级期中)若a2b216,(a+b)28,则ab的值为()A32B32C6D6【变式4-1】(2022春姜堰区校级月考)已知4m+n90,2m3n10,求(m+2n)2(3mn)2的值【变式4-2】(2022春双峰县期中)若x、y满足x2+y2=54,xy=12,求下列各式的值(1)(x+y)2(2)x4+y4【变式4-3】(2022春包河区期中)已知

6、(2022m)(2022m)2021,那么(2022m)2+(2022m)2的值为()A4046B2023C4042D4043【题型5 利用面积法验证乘法公式】【例5】(2022春新泰市期末)将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是()A(ab)(a+b)a2b2B(a+b)2a2+2ab+b2C(ab)2a22ab+b2D(2ab)24a24ab+b2【变式5-1】(2022春乐平市期末)如图所示,两次用不同的方法计算这个图的面积,可验证整式乘法公式是()A(a+b)(ab)a2b2B(a+b)(a+2b)a2+3ab+2b2C(a+b)2a2+2

7、ab+b2D(ab)2a22ab+b2【变式5-2】(2022春锦州期末)如图1,在边长为a的大正方形中,剪去一个边长为3的小正方形,将余下的部分按图中的虚线剪开后,拼成如图2所示的长方形,根据两个图形阴影部分面积相等的关系,可验证的等式为()A(a3)2a26a+9B(a+3)2a2+6a+9Ca(a+3)a2+3aD(a+3)(a3)a29【变式5-3】(2022郫都区模拟)如图,在边长为(x+a)的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,由左右两个阴影部分面积,可以得到一个恒等式是()A(x+a)2a2x(x+2a)Bx2+2axx(x+2a)C(x

8、+a)2x2a(a+2x)Dx2a2(x+a)(xa)【题型6 乘法公式的应用】【例6】(2022春榆次区期中)如图1,从边长为(a+5)cm的大正方形纸片中剪去一个边长为(a+2)cm的小正方形,剩余部分(如图2)沿虚线剪开,按图3方式拼接成一个长方形(无缝隙不重合)则该长方形的面积为()A9cm2B(6a9)cm2C(6a+9)cm2D(6a+21)cm2【变式6-1】(2022秋西峰区期末)如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形若正方形ABCD的边长

9、为x,AE10,CG20,长方形EFGD的面积为200求正方形MFNP的面积(结果必须是一个具体数值)【变式6-2】(2022春湖州期末)如图,把一块面积为100的大长方形木板被分割成2个大小一样的大正方形,1个小正方形和2个大小一样的长方形后,如图摆放,且每个小长方形的面积为16,则标号为的正方形的面积是()A16B14C12D10【变式6-3】(2022秋香坊区校级期中)如图,我校一块边长为2x米的正方形空地是八年级14班的卫生区,学校把它分成大小不同的四块,采用抽签的方式安排卫生区,下图是四个班级所抽到的卫生区情况,其中1班的卫生区是一块边长为(x2y)米的正方形,其中02yx(1)分别

10、用x、y的式子表示八年3班和八年4班的卫生区的面积;(2)求2班的卫生区的面积比1班的卫生区的面积多多少平方米?【题型7 平方差公式、完全平方公式的几何背景】【例7】(2008秋上海校级期中)我们已经知道利用图形中面积的等量关系可以得到某些数学公式,如图一,我们可以得到两数差的完全平方公式:(ab)2a22ab+b2(1)请你在图二中,标上相应的字母,使其能够得到两数和的完全平方公式(a+b)2a2+2ab+b2,(2)图三是边长为a的正方形中剪去一个边长为b的小正方形,剩下部分拼成图四的形状,利用这两幅图形中面积的等量关系,能验证公式 ;(3)除了拼成图四的图形外还能拼成其他的图形能验证公式

11、成立,请试画出一个这样的图形,并标上相应的字母【变式7-1】(2022春西城区校级期中)阅读学习:数学中有很多恒等式可以用图形的面积来得到如图1,可以求出阴影部分的面积是a2b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是ab,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(ab)a2b2(1)观察图3,请你写出(a+b)2,(ab)2,ab之间的一个恒等式 (2)观察图4,请写出图4所表示的代数恒等式: (3)现有若干块长方形和正方形硬纸片如图5所示,请你用拼图的方法推出一个恒等式(a+b)2a2+2ab+b2,仿照图4画出你的拼图并标出相关数据【变式7-2

12、】(2022春武侯区校级期中)知识生成通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式例如:如图是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图的形状拼成一个正方形请解答下列问题:(1)观察图,请你写出(a+b)2、(ab)2、ab之间的等量关系是 ;(2)根据(1)中的等量关系解决如下问题:若x+y6,xy=112,求(xy)2的值;知识迁移类似地,用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式(3)根据图,写出一个代数恒等式: ;(4)已知a+b3,ab1,利用上面的规律求a3+b32的值【变式7-3】(2022春贺兰县期中)在前面的

13、学习中,我们通过对同一面积的不同表达和比较,利用图和图发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)x2+4xy+3y2【拓展应用】提出问题:4743,5654,7971,是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以4743为

14、例:(1)画长为47,宽为43的矩形,如图,将这个4743的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,4743的矩形面积或(40+7+3)40的矩形与右上角37的矩形面积之和,即4743(40+10)40+3754100+372021,用文字表述4743的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果请你参照上述几何建模步骤,计算5753要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):_,证明

15、上述速算方法的正确性【题型8 整式乘法中的新定义问题】【例8】(2022春嘉兴期中)定义:对于三个不是同类项的单项式A,B,C,若A+B+C可以写成(a+b)2的形式,则称这三项为“完全搭配项”,若单项式x2,4和m是完全搭配项,则m可能是 (写出所有情况)【变式8-1】(2022春成华区月考)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:42202,124222,206242,因此4、12、20都是这种“神秘数”(1)28和2012这两个数是“神秘数”吗?试说明理由;(2)试说明神秘数能被4整除;(3)两个连续奇数的平方差是神秘数吗?试说明理由【变式8-2】(

16、2022春博山区期末)定义:如果一个正整数能表示为两个连续正奇数的平方差,那么称这个正整数为:“奇异数”如8,16,24都是“奇异数”(1)写出两个奇异数(8,16,24除外);(2)试问偶数6050是不是奇异数?为什么?【变式8-3】(2022永川区模拟)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,否则称这个正整数为“非智慧数”例如:22123;32225;32128;42327;422212;421215;,等等因此3,5,8,都是“智慧数”;而1,2,4,都是“非智慧数”对于“智慧数”,有如下结论:设k为正整数(k2),则k2(k1)22k1除1以外,所有的奇

17、数都是“智慧数”;设k为正整数(k3),则k2(k2)2 都是“智慧数”(1)补全结论中的空缺部分;并求出所有大于5而小于20的“非智慧数”;(2)求出从1开始的正整数中从小到大排列的第103个“智慧数”【题型9 整式乘法中的规律探究】【例9】(2022春江阴市期中)观察下列各式(x1)(x+1)x21,(x1)(x2+x+1)x31,(x1)(x3+x2+x+1)x41根据规律计算:(2)2018+(2)2017+(2)2016+(2)3+(2)2+(2)1+1的值为()A220191B220191C2201913D22019+13【变式9-1】(2022丰顺县校级开学)解答下列问题(1)观

18、察下列各式并填空:321281;523282;72528;92284;9285;132286;(2)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)你能运用平方差公式来说明(2)中你所写规律的正确性吗?【变式9-2】(2022秋肥城市期中)我们知道,1+2+3+n=n(n+1)2,关于这个公式的推导方法,有很多,比如说小高斯的故事下面我们利用以前学过的公式,给出另外一种推导方法:首先,我们知道:(n+1)2n2+2n+1,变形一下,就是(n+1)2n22n+1,依次给n一些特殊的值:1,2,3,我们就能得到下面一列式子:221221+1;322222+1;42

19、3223+1;(n+1)2n22n+1;观察这列式子,如果把它们所有的等式两端左右相加,抵消掉对应的项,我们可以得到(n+1)2122(1+2+3+n)+n,观察这个式子,等式右边小括号内的式子,不就是我们要求的吗?把它记为S就是:(n+1)2122S+n,把S表示出来,得到:S1+2+3+n=n(n+1)2用这个思路,可以求很多你以前不知道的和,请你仿照这个推导思路,推导一下S12+22+32+n2的值【变式9-3】(2022春漳浦县期中)你能化简(a1)(a99+a98+a97+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论(1)先填空:(a1)(a+1) ;(a1)(a2

20、+a+1);(a1)(a3+a2+a+1) ;由此猜想:(a1)(a99+a98+a97+a2+a+1) (2)利用这个结论,你能解决下面两个问题吗?求2199+2198+2197+22+2+1的值;若a5+a4+a3+a2+a+10,则a6等于多少?专题9.2 乘法公式【九大题型】【苏科版】【题型1 乘法公式的基本运算】1【题型2 利用完全平方式确定系数】3【题型3 乘法公式的运算】4【题型4 利用乘法公式求值】6【题型5 利用面积法验证乘法公式】7【题型6 乘法公式的应用】9【题型7 平方差公式、完全平方公式的几何背景】12【题型8 整式乘法中的新定义问题】17【题型9 整式乘法中的规律探

21、究】20【知识点1 乘法公式】平方差公式:(a+b)(a-b)=a2-b2。两个数的和与这两个数的差的积,等于这两个数的平方差。这个公式叫做平方差公式。完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍。这两个公式叫做完全平方公式。【题型1 乘法公式的基本运算】【例1】(2022春青川县期末)下列各式中计算正确的是()A(a+2b)(a2b)a22b2B(a+2b)(a2b)a24b2C(a2b)(a2b)a2+4b2D(a2b)(a+2b)a24b2【分析】根据平方差公式对各选项分析判断后利

22、用排除法求解【解答】解:A、应为(a+2b)(a2b)a2(2b)2,故本选项错误;B、应为(a+2b)(a2b)a2+4ab4b2,故本选项错误;C、(a2b)(a2b)a2+4b2,正确;D、应为(a2b)(a+2b)a24ab4b2,故本选项错误故选:C【变式1-1】(2022春六盘水期中)下列各式中能用平方差公式计算的是()A(x+2y)(x2y)B(3x5y)(3x5y)C(15m)(5m1)D(a+b)(b+a)【分析】根据平方差公式的特征:(1)两个两项式相乘,(2)有一项相同,另一项互为相反数,对各选项分析判断后利用排除法求解【解答】解:A、不存在相同的项,不能运用平方差公式进

23、行计算;B、5y是相同的项,互为相反项是3x与3x,符合平方差公式的要求;C、不存在相同的项,不能运用平方差公式进行计算;D、不存在互为相反数的项,不能运用平方差公式进行计算;故选:B【变式1-2】(2022春巴中期末)下列运算正确的是()A(x+y)(yx)x2y2B(x+y)2x2+2xy+y2C(xy)2x22xyy2D(x+y)(y+x)x2y2【分析】根据完全平方公式和平方差公式逐个判断即可【解答】解:A、结果是y2x2,故本选项不符合题意;B、结果是x22xy+y2,故本选项不符合题意;C、结果是x2+2xy+y2,故本选项不符合题意;D、结果是x2y2,故本选项符合题意.【变式1

24、-3】(2022秋天心区校级期中)下列各式中,能用完全平方公式计算的是()A(ab)(ba)B(n2m2)(m2+n2)C(12p+q)(q+12p)D(2x3y)(2x+3y)【分析】A、原式利用平方差公式化简得到结果,不合题意;B、原式第一个因式提取1变形后利用完全平方公式计算得到结果,符合题意;C、原式利用平方差公式化简得到结果,不合题意;D、原式利用平方差公式化简得到结果,不合题意【解答】解:A、原式b2a2,本选项不合题意;B、原式(m2+n2)2,本选项符合题意;C、原式q214p2,本选项不合题意;D、原式4x29y2,本选项不合题意,故选:B【题型2 利用完全平方式确定系数】【

25、例2】(2022秋望城区期末)若二项式x2+4加上一个单项式后成为一个完全平方式,则这样的单项式共有()A1个B2个C3个D5个【分析】本题考查运用完全平方式进行因式分解的能力,式子x2和4分别是x和2的平方,可当作首尾两项,根据完全平方公式可得中间一项为加上或减去x和2的乘积的2倍,即4x,同时还应看到x2+4加上4或x2或x416后也可分别构成完全平方式,所以可加的单项式共有5个【解答】解:可添加4x,4,x2或x416等5个故选:D【变式2-1】(2022南通模拟)如果多项式x2+2x+k是完全平方式,则常数k的值为()A1B1C4D4【分析】根据完全平方公式的乘积二倍项和已知平方项先确

26、定出另一个数是1,平方即可【解答】解:2x21x,k121,故选A【变式2-2】(2022秋青县期末)若9x2(K1)x+1是关于x的完全平方式,则常数K的值为()A0B5或7C7D9【分析】根据完全平方式的定义解决此题【解答】解:9x2(K1)x+1(3x)2(K1)x+129x2(K1)x+1是关于x的完全平方式,9x2(K1)x+1(3x)223x1+12(3x)26x+12(K1)6当(K1)6时,K5当(K1)6时,K7综上:K5或7故选:B【变式2-3】(2022秋崇川区校级月考)(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写

27、成()AabcB(ab)2+(bc)20CcabDabc【分析】先把原式展开,合并,由于它是完全平方式,故有3x2+2(a+b+c)x+(ab+bc+ac)3x+33(a+b+c)2,化简有ab+bc+aca2+b2+c2,那么就有(ab)2+(bc)2+(ca)20,三个非负数的和等于0,则每一个非负数等于0,故可求abc故选答案B【解答】解:原式3x2+2(a+b+c)x+(ab+bc+ac),(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,3x2+2(a+b+c)x+(ab+bc+ac)3x+33(a+b+c)2,ab+bc+ac=13(a+b+c)2=13

28、(a2+b2+c2+2ab+2ac+2bc),ab+bc+aca2+b2+c2,2(ab+bc+ac)2(a2+b2+c2),即(ab)2+(bc)2+(ca)20,ab0,bc0,ca0,abc故选:B【题型3 乘法公式的运算】【例3】(2022春龙胜县期中)计算:(1152)(1162)(1172)(11992)(111002)的结果是()A101200B101125C101100D1100【分析】根据a2b2(ab)(a+b)展开,中间的数全部约分,只剩下第一个数和最后一个数相乘,从而得出答案【解答】解:原式(115)(1+15)(116)(1+16)(117)(1+17)(1199)(

29、1+199)(11100)(1+1100)=45655676678798991009999100101100 =45101100 =101125故选:B【变式3-1】(2022秋碾子山区期末)先化简,再求值:(2xy)(y+2x)(2y+x)(2yx),其中x1,y2【分析】利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解【解答】解:(2xy)(y+2x)(2y+x)(2yx),4x2y2(4y2x2),4x2y24y2+x2,5x25y2,当x1,y2时,原式51252252015【变式3-2】(2022春乳山市期末)用乘法公式进行计算:(1)2019220182020;

30、(2)112+1366+392【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差;完全平方公式:(a+b)2a2+2ab+b2【解答】解:(1)201922018202020192(20221)(2022+1)20192(202221)1;(2)112+1366+392112+132311+392112+21139+392(11+39)25022500【变式3-3】(2022春顺德区校级月考)计算:(2+1)(22+1)(24+1)(264+1)【分析】原式变形后,利用平方差公式计算即可得到结果【解答】解:原式(21)(2+1)(22+1)(24+1)(264+1)(221

31、)(22+1)(24+1)(264+1)(241)(24+1)(264+1)(2641)(264+1)21281【题型4 利用乘法公式求值】【例4】(2022秋九龙坡区校级期中)若a2b216,(a+b)28,则ab的值为()A32B32C6D6【分析】根据a2b216得到(a+b)2(ab)2256,再由(a+b)28,求出(ab)232,最后根据ab=(a+b)2(ab)24求出答案【解答】解:a2b216,(a+b)(ab)16,(a+b)2(ab)2256,(a+b)28,(ab)232,ab=(a+b)2(ab)24=8324=6,故选:C【变式4-1】(2022春姜堰区校级月考)已

32、知4m+n90,2m3n10,求(m+2n)2(3mn)2的值【分析】原式利用平方差公式分解,变形后将已知等式代入计算即可求出值【解答】解:4m+n90,2m3n10,(m+2n)2(3mn)2(m+2n)+(3mn)(m+2n)(3mn)(4m+n)(3n2m)900【变式4-2】(2022春双峰县期中)若x、y满足x2+y2=54,xy=12,求下列各式的值(1)(x+y)2(2)x4+y4【分析】(1)原式利用完全平方公式化简,将各自的值代入计算即可求出值;(2)原式利用完全平方公式变形,将各自的值代入计算即可求出值【解答】解:(1)x2+y2=54,xy=12,原式x2+y2+2xy=

33、541=14;(2)x2+y2=54,xy=12,原式(x2+y2)22x2y2=251612=1716【变式4-3】(2022春包河区期中)已知(2022m)(2022m)2021,那么(2022m)2+(2022m)2的值为()A4046B2023C4042D4043【分析】利用完全平方公式变形即可【解答】解:(ab)2a22ab+b2,a2+b2(ab)2+2ab(2022m)2+(2022m)2(2022m)(2022m)2+2(2022m)(2022m)4+220214046故选:A【题型5 利用面积法验证乘法公式】【例5】(2022春新泰市期末)将图甲中阴影部分的小长方形变换到图乙

34、位置,你能根据两个图形的面积关系得到的数学公式是()A(ab)(a+b)a2b2B(a+b)2a2+2ab+b2C(ab)2a22ab+b2D(2ab)24a24ab+b2【分析】利用两个图形面积之间的关系进行解答即可【解答】解:如图,图甲中、的总面积为(a+b)(ab),图乙中、的总面积可以看作两个正方形的面积差,即a2b2,因此有(a+b)(ab)a2b2,故选:A【变式5-1】(2022春乐平市期末)如图所示,两次用不同的方法计算这个图的面积,可验证整式乘法公式是()A(a+b)(ab)a2b2B(a+b)(a+2b)a2+3ab+2b2C(a+b)2a2+2ab+b2D(ab)2a22

35、ab+b2【分析】用代数式表示各个部分以及总面积即可得出答案【解答】解:大正方形的边长为a+b,因此面积为(a+b)2,四个部分的面积分别为a2、ab、ab、b2,由面积之间的关系得,(a+b)2a2+2ab+b2,故选:C【变式5-2】(2022春锦州期末)如图1,在边长为a的大正方形中,剪去一个边长为3的小正方形,将余下的部分按图中的虚线剪开后,拼成如图2所示的长方形,根据两个图形阴影部分面积相等的关系,可验证的等式为()A(a3)2a26a+9B(a+3)2a2+6a+9Ca(a+3)a2+3aD(a+3)(a3)a29【分析】用代数式分别表示图1、图2中阴影部分的面积即可【解答】解:图

36、1中,阴影部分的面积可以看作是两个正方形的面积差,即a232a29,图2是长为a+3,宽为a3的长方形,因此面积为(a+3)(a3),所以有(a+3)(a3)a29,故选:D【变式5-3】(2022郫都区模拟)如图,在边长为(x+a)的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,由左右两个阴影部分面积,可以得到一个恒等式是()A(x+a)2a2x(x+2a)Bx2+2axx(x+2a)C(x+a)2x2a(a+2x)Dx2a2(x+a)(xa)【分析】根据阴影部分面积相等得到恒等式即可【解答】解:第一幅图阴影部分面积(x+a)2a2,第二幅图阴影部分面积(x+

37、a+a)xx(x+2a),(x+a)2a2x(x+2a),故选:A【题型6 乘法公式的应用】【例6】(2022春榆次区期中)如图1,从边长为(a+5)cm的大正方形纸片中剪去一个边长为(a+2)cm的小正方形,剩余部分(如图2)沿虚线剪开,按图3方式拼接成一个长方形(无缝隙不重合)则该长方形的面积为()A9cm2B(6a9)cm2C(6a+9)cm2D(6a+21)cm2【分析】由图形可知长方形的长为两正方形的和,宽为两长方形的差,据此可得答案【解答】解:根据题意,长方形的面积为(a+5)+(a+2)(a+5)(a+2)3(2a+7)(6a+21)cm,故选:D【变式6-1】(2022秋西峰区

38、期末)如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形若正方形ABCD的边长为x,AE10,CG20,长方形EFGD的面积为200求正方形MFNP的面积(结果必须是一个具体数值)【分析】设DEa,DGb,则ax10,bx20,ab10,又由ab200,所以正方形MFNP的面积为(a+b)2(ab)2+4ab900【解答】解:)设DEa,DGb,则ax10,bx20,ab10,又由ab200,正方形MFNP的面积为:(a+b)2(ab)2+4ab102+4200900

39、【变式6-2】(2022春湖州期末)如图,把一块面积为100的大长方形木板被分割成2个大小一样的大正方形,1个小正方形和2个大小一样的长方形后,如图摆放,且每个小长方形的面积为16,则标号为的正方形的面积是()A16B14C12D10【分析】设标号为的正方形的边长为x,标号为的正方形的边长为y,根据图形及已知条件可将长方形的长和宽表示出来,再根据每个小长方形的面积均为16及大长方形的面积为100,得出x2与y2的数量关系,然后解得y2即可【解答】解:设标号为的正方形的边长为x,标号为的正方形的边长为y,则标号为的长方形长为(x+y),宽为(xy),每个小长方形的面积均为16,(x+y)(xy)

40、16,x2y216,x216+y2大长方形的长等于标号为的小长方形的长与标号为的正方形的边长的和,宽等于标号为的小长方形的宽与标号为的正方形的边长的和,大长方形的长为:(x+y)+x2x+y,宽为:(xy)+x2xy,大长方形的面积为100,(2x+y)(2xy)100,4x2y2100,4(16+y2)y2100,y212,即标号为的正方形的面积为y212故选:C【变式6-3】(2022秋香坊区校级期中)如图,我校一块边长为2x米的正方形空地是八年级14班的卫生区,学校把它分成大小不同的四块,采用抽签的方式安排卫生区,下图是四个班级所抽到的卫生区情况,其中1班的卫生区是一块边长为(x2y)米

41、的正方形,其中02yx(1)分别用x、y的式子表示八年3班和八年4班的卫生区的面积;(2)求2班的卫生区的面积比1班的卫生区的面积多多少平方米?【分析】(1)结合图形、根据平方差公式计算即可;(2)根据图形分别表示出2班的卫生区的面积和1班的卫生区,根据平方差公式和完全平方公式化简、求差即可【解答】解:(1)八年3班的卫生区的面积(x2y)2x(x2y)x24y2;八年4班的卫生区的面积(x2y)2x(x2y)x24y2;(2)2x(x2y)2(x2y)28xy答:2班的卫生区的面积比1班的卫生区的面积多8xy平方米【题型7 平方差公式、完全平方公式的几何背景】【例7】(2008秋上海校级期中)我们已经知道利用图形中面积的等量关系可以得到某些数学公式,如图一,我们可以得到两数差的完全平方公式:(ab)2a22ab+b2(1)请你在图二中,标上相应的字母,使其能够得到两数和的完全平方公式(a+b)2a2+2ab+b2,(2)图三是边长为a的正方形中剪去一个边长为b的小正方形,剩下部分拼成图四的形状,利用这两幅图形中面积的等量关系,能验证公式a2b2(a+b)(ab);(3)除了拼成图四的图形外还能拼成其他

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁