《如何测量纳米颗粒的粒径.docx》由会员分享,可在线阅读,更多相关《如何测量纳米颗粒的粒径.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如何测量纳米颗粒的粒径近年来PM2.5成为肯定的热词,简单来说就是直径小于等于2.5m 的可吸入颗粒物。宏观世界中看似没什么差别的颗粒,在微观角度可谓 包罗万象,因此必要的定量描述必不可少。首先我们来明确一个基本概念和一个基本假设。粒度:颗粒的大小 称为粒度,通常球体颗粒的粒度用直径表示,立方体颗粒的粒度用边长 表示。粒径是颗粒的直径。然而实际中的颗粒大多是不规定的,所以, 为了更便利的描述颗粒的大小,在实际测算中,将不规定的颗粒等效为 规定球,并以其直径作为颗粒的粒度。这就是“等效圆球理论”。几种粒度测量方法及其范围:所以,小颗粒,你多大呀?下面让我们一起认得筛分法、显微(图 像)法、沉降法
2、、电阻法、光阻法、激光衍射、动态光散射、电子显微 镜、超声波法和比表面积法。一、筛分法筛分法测定粒径时,依照被测试样的粒径大小及分布范围,将大小 不同筛孔的筛子叠放在一起进行筛分,收集各个筛子的筛余量,称量求 得被测试样以重量计的颗粒粒径分布。筛分法适于粒度30m的粉体。测定时取肯定量的粉料通过筛子,测 定筛余量(即通不过的粉料量)占总重量的百分率,筛余越多,说明粉 料颗粒愈粗。不同产品有不同的筛余量(如电容器陶瓷要求筛余量小于 0.01%) o其中紧要的参数是:A.筛分直径(颗粒能够通过的最小方筛孔的宽 度);B.筛孔的大小用目表示每一英寸长度上筛孔的个数,国产筛是以 每平方英寸上的孔数表示
3、筛的目数。优点:设备简单,操作简便,易于实行,设备造价低。缺点:1)对小于400目(38m)的干粉很难测量。测量时间越长,得到的 结果就越小;2)在筛分操作过程中,颗粒有可能破损或断裂,因此筛分特别不 适合测定长形针状或片状颗粒的粒度。同时必需注意到,非球形的颗粒 通过筛子在肯定程度上取决于颗粒的方向,造成测量误差。此外,含有 结合水的颗粒粒度的测量不适合采纳筛分法;3)不能测量射流或乳浊液,结果受人为因素影响较大;4)所谓某某粉体多少目,是指用该目数的筛筛分后的筛余量小于 某给定值。假如不指明筛余量,“目”的含义是模糊的,给沟通带来不 便。常规筛子超声振动筛二、显微镜(图像)法显微镜图像法能
4、同时察看颗粒的形貌及直观地对颗粒的几何尺寸进 行测量,常常被用来作为对其他测量方法的一种校验或标定。该类仪器 由显微镜、CCD摄像头(或数码相机)、图形采集卡、计算机(图像分 析仪)等构成。它的基本工作原理是将显微镜放大后的颗粒图像通过CCD摄像头和 图形采集卡传输到计算机中,由计算机对这些图像进行边缘识别等处理, 计算出每个颗粒的投影面积,依据等效投影面积原理得出每个颗粒的粒 径,再统计出所设定的粒径区间的颗粒的数量,就可以得到粒度分布。颗粒图像法有静态、动态两种测试方法:静态方式使用改装的显微镜系统,搭配高清楚摄像机,将颗粒样品 的图像直观的反映到电脑屏幕上,搭配相关的计算机软件可进行颗粒
5、大 小、形状、整体分布等属性的计算。动杰方式具有形貌和粒径分布双重分析本领。重修了全新循环分散 系统和软件数据处理模块,解决了静态颗粒图像仪的制样繁琐、采样代 表性差、颗粒粘连等缺陷。优点:可以直接察看颗粒的形貌,可以精准地得到球型度、长径比 等特别数据,适合分布窄(最大和最小粒径的比值小于10: 1)的样品。缺点:器材价格昂贵,试样制备繁琐,代表性差,操作多而杂,速 度慢,不宜分析粒度范围宽的样品,无法分析小于1微米的样品,显微 镜或电镜不适合用于产品的质量掌控,但可作为一个特别有价值的辅佑 襄助手段,与激光衍射法或动态光散射法相结合来进行颗粒表征。适合对粒度分布比较窄的颗粒进行测量。它的工
6、作原理相对比较简 单:悬浮在电解液中的颗粒在负压作用下通过一个由红宝石制成的小孔, 两个专白电极构成的电阻式传感器分别插浸在小孔的两侧,颗粒通过小孔 时电极间电阻增大,产生一个电压脉冲。脉冲的幅值对应于颗粒的体积 和相应的粒径,脉冲的个数对应于颗粒的个数。对全部各个测量到的脉 冲计数并确定其幅值,即可得出颗粒的大小,统计出颗粒的分布。由于 可以测得颗粒数量,因此又称库尔特计数法。图中,小孔管浸泡在电解液中,小孔管内外各有一个电极,电流通 过孔管壁上的小圆孔从阳极流到阴极。小孔管内部处于负压状态,因此 管外的液体将流动到管内。测量时将颗粒分散到液体中,颗粒就跟着液 体一起流动。当其经过小孔时,小
7、孔的横截面积变小,两电极之间的电 阻增大,电压上升,产生一个电压脉冲。当电源是恒流源时,可以证明 在肯定的范围内脉冲的峰值正比于颗粒体积。仪器只要测出每一个脉冲 的峰值,即可得出各颗粒的大小,统计出粒度的分布。优点:测量精度高,操作简便,测量速度快,重复性较好,通常范 围在0. 5100m。缺点:动态范围较小,简单发生堵孔故障,测量下限不够小,不适 合测量小于0. 1m的颗粒样品。电阻法测量粒径原理图五、光阻法当颗粒通过光束时,光被挡住,引起光电检测器信号变化,该信号 脉冲的个数对应于颗粒的个数,而脉冲的面积对应于颗粒的大小。样品 需稀释至极低浓度,测量结果取决于校准。优点:精度较高繁琐。缺点
8、:操作比较。光阻法测量粒径原理图六、激光散射/衍射法光散射法包括光散射法、X射线小角度散射法和消光法。1、利用衍射散射测量颗粒粒度的原理衍射散射规律可用Fraunhoffer衍射解释。Fraunhoffer衍射是指 光源和察看点与障碍物的距离与波长的乘积都宏大于障碍物面积的衍射, 又称为远场衍射。对衍射散射来说,颗粒的散射与其材料的本性,即是 否汲取以及折射率的大小都无关,因此利用衍射散射进行粒度测量无需 知道颗粒的折射率。激光衍射颗粒粒度分析仪重要由激光器、扩束镜、聚焦透镜、光电 探测器和计算机构成,图所示为激光衍射粒度分析仪的原理图。在图中, 来自He-Ne激光器中的一束窄光束经扩束系统扩
9、束后,平行地照射在 颗粒槽中的被测颗粒群上,由颗粒群产生的衍射光经聚焦透镜会聚后在 其焦平面上形成衍射图,利用位于焦平面上的一种特制的环形光电探测 器进行信号的光电变换,然后将来自光电检测器中的信号放大、a/d变 换、数据采集送入到计算机中,采纳预先编制的优化程序对计算值与实 测值相比较,即可快速地反推出颗粒群的尺寸分布。请牢记:小颗粒的 散射角大,大颗粒的散射角小。2、利用Mie散射理论测量颗粒粒度的原理当待测颗粒的直径D与入射光的波长相当时,衍射散射理论不再适 用。考虑到大多数激光粒度分布仪使用的都是波长为632. 8nni的HeNe 激光,因此基于衍射散射理论所能测量的颗粒粒径的下限约为
10、1m。假如 要测量粒径更小的颗粒群的粒度分布,就需要使用严格的Mie散射理论。 依据Mie散射理论,散射光的强度分布不仅与颗粒的粒径有关,还与颗 粒相对于分散介质的折射率有关,其表达式更加多而杂。虽然如此,用 Mie散射理论测量颗粒群的粒度分布的原理与衍射散射理论的相像佛, 即都是通过计算机数值计算方法,依据相应的散射光强分布公式,计算 出对应于所测得的散射光强分布的样品的粒度分布,只不过前者使用的 是Mie散射公式,后者使用的是较简单的衍射散射公式。在实在测量时, 由于小颗粒的散射角很大,所以需要加添一些大角度的光电探测器用来 检测小颗粒的散射光。优点:操作简便,测试速度快,测试范围广(最好
11、的激光粒度仪的 测量范围是0. 042000m, 一般的也能达到0. 1300m),重复性和精 准性好,可进行在线测量和干法测量。测试速度快(13min/次),自 动化程度高,操作简便,重复性和真实性好,可以测试干粉样品,可以 测量混合粉、乳浊液和雾滴等。缺点:结果受分布模型影响较大,不宜测量粒度分布很窄的样品, 仪器造价较高,辨别力低。七、动态光散射法当颗粒粒度小于光波波长时,由瑞利散射理论,散射光相对强度的 角分布与粒子大小无关,不能够通过对散射光强度的空间分布(即上述 的静态光散射法)来确定颗粒粒度,动态光散射正好弥补了在这一粒度 范围其他光散射测量手段的不足,原理是当光束通过产生布朗运
12、动的颗 粒时,会散射出肯定频移的散射光,散射光在空间某点形成干涉,该点 光强的时间相关函数的衰减与颗粒粒度大小有一一对应的关系。通过检 测散射光的光强随时间变化,并进行相关运算可以得出颗粒粒度大小。尽管如此,动态光散射获得的是颗粒的平均粒径,难以得出粒径分布参 数。动态光散射法适于测定亚微米级颗粒。八、电子显微镜法适用于10-0. 001m的测量。用电子显微镜测定粒径,通常是通过 获得颗粒的图象来实现,这种方法测定误差重要是因颗粒检测范围大小 而引起,为了削减误差,需从某一给定式样的多个侧面的照片进行测定。 比较典型的有2种:即扫描电镜(SEM)和透射电镜(TEM) o扫描电镜 的测定下限是0
13、. 02m,而透射电镜是0.001m,且测定比较精准,但试样 制备麻烦。将电镜和近代图象分析仪相结合,可避开计算大量颗粒而造 成的人为误差。用扫描电镜可察看到粉末颗粒的三维形态及聚积形态。图像及照片 的立体感强,但辨别率比透射电镜低,对细小的颗粒不易得到清楚的图 像。透射电镜是一种高辨别率、高放大倍数的显微镜。是测量和察看颗 粒的形貌、组织和结构的有效工具。在陶瓷粉体讨论工作中,将原材料 粉末细小颗粒均匀的分散在有支持膜的铜网上,在透射电镜中察看,可 以确定颗粒的大小和粒度分布、形貌。但试样必需用肯定的分散剂,使 粉末在支持膜上高度分散,纳米级的粉体粒径最好用透射电镜进行测量。优点:适合测试超
14、新颗粒甚至纳米颗粒,辨别力高,可进行形貌和 结构分析。缺点:样品少,代表性差,测量易受人为因素影响,仪器价格昂贵。九、超声波法超声波发生端发出肯定频率和强度的超声波,经过测试区域,到达 信号接收端。当颗粒通过测试区域时,由于不同大小的颗粒对声波的汲 取程度不同,在接收端上得到的声波的衰减程度也就不一样,依据颗粒 大小同超声波强度衰减之间的关系,得到颗粒的粒度分布,同时还可测 得体系的固含量。它可以直接测试固液比达到70%的高浓度浆料。优点:可对高浓度浆料直接测量。缺点:辨别率较低。超声法测粒径的原理图十、比表面积法颗粒群的粒径可用比表面积来间接表示。比表面积是单位质量颗粒 的表面积之和,通过测量颗粒的比表面积Sw,再将其换算成具有相同比 表面积值的均匀球形颗粒的直径,这种测量粒径的方法称为比表面积法, 所得粒径称为比表面积径。总结一般来说,颗粒粒度既取决于直接测量(或间接测量)的数值尺寸, 也取决于测量方法。因此,由于各种颗粒粒度测量方法的物理基础不同, 同一样品用不同的测量方法得到的粒径的物理意义甚至粒径大小也不同, 比如筛分法得到的是筛分径;显微镜法、光散射法得到的是统计径;沉 降法、电感应法和质谱法得到的是等效径。此外,不同的颗粒粒度测量 方法的适用范围也不同。所以依据被测对象、测量精准度和测量精度等 选择合适的测量方法是非常紧要和必要的。