《PTC选型方法讲解.docx》由会员分享,可在线阅读,更多相关《PTC选型方法讲解.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、自恢复保险丝 PTC 工作原理和使用方法日期:2010-6-14东莞翰达电子是专业生产自恢复保险等敏感元器件的专业厂家之一自恢复保险丝 由经过特别处理的聚合树脂(Polymer)及分布在里面的导电粒子(Carbon Black)组成。在正常操作下聚合树脂严密地将导电粒子束缚在结晶状的构造外, 构成链状导电电通路,此时的自复保险丝为低阻状态(a),线路上流经自复保险丝的电流所产生的热能小,不会转变晶体构造。当线路发生短路或过载时,流经自复保险丝的大 电流产生的热量使聚合树脂溶化,体积快速增长,形成高阻状态(b),工作电流快速减小, 从而对电路进展限制和保护。当故障排解后,HD 重冷却结晶,体积收
2、缩,导电粒子重形成导电通路,自复保险丝恢复为低阻状态,从而完成对电路的保护,无须人工更换。应用范围通迅设备 :程控交换机、 用户终端设备、 总配线保安单元等。汽车电子 :汽车线束、 汽车防盗器 、汽车微电机、 汽车电子产品等。电子行业 :电源镇流器、 微电机 、火灾报警、 仪器仪表等。电器设备 :卫星接收机 、安防设备、 扬声器、 工业自动掌握等。安装方式自复保险丝没有极性,阻抗小,安装便利,将其串联关于被保护电器的线路中即可,电源直流或沟通均可。动作原理自恢复保险丝的动作原理是一种能量的动态平衡,流过 HD 系列元件的电流由于 HD 系列的关系产生热量,产生的热全部或局部散发到环境中,而没有
3、散发出去的热便会提高 HD 系列元件的温度。正常工作时的温度较低,产生的热和散发的热到达平衡。HD 系列元件处于低阻状态,HD 系列不动作,当流过 HD 系列元件的电流增加或环境温度上升,但假设到达产生的热和散发的热的平衡时,HD 系列仍不动作。当电流或环境温度再提高时,HD 系列会到达较高的温度。假设此时电流或环境温度连续再增加,产生的热量会大于散发出去的热量,使得 HD 系列元件温度骤增,在此阶段, 很小的温度变化会造成阻值的大幅提高,这时 HD 系列 元件处于高阻保护状态, 阻抗的增加限制了电流,电流在很短时间内急剧下降,从而保护电路设备免受损坏,只要施加的电压所产生的热量足够 HD 系
4、列元件散发出的热量,处于变化状态下 HD 系列元件便可以始终处于动作状态高阻。当施加的电压消逝时, HD 系列便可以自动恢复了。高分了 PTC 热敏电阻动作后的恢复特性高分了 PTC 热敏电阻由于电阻可恢复,因而可以重复屡次使用。以下图为热敏电阻动作后,恢复过程中电阻随时间变化的示意图。电阻一般在十几秒到几十秒中即可恢复到初始值 1.6 倍左右的水平,此时热敏电阻的维持电流已经恢复到额定值,可以再次使用了。一般说来,面积和厚度较小的热敏电阻恢复相对较快;而面积和厚度较大的热敏电阻恢复相对较慢。温度对自恢复保险丝元件的影响高分子 PTC 自恢复保险丝是一种直热式、阶跃型热敏电阻,其电阻变化过程与
5、自身的发热和散热状况有关,因而其维持电流 IH、动作电流 IT 及动作时间受环境温度影响。以下图为热敏电阻典型的维持电流、动作电流与环境温度的关系示意图。当环境温度和电流处于 A 区时,热敏电阻发热功率大于散热功率而会动作;当环境温度和电流处于 B 区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作;当环境温度和电流处于 C 区时发热功率小于散热功率,热敏电阻将长期处于不动作状态。符号说明符号Ih It ImaxPdmax Vmax说明HD 元件在 25 环境温度下的最大的工作电流HD 元件在 25环境温度下启动保护的最小电流HD 元件能承受最大电流HD 元件工作状态下的消耗成效
6、HD 元件的最大工作电压VmaxiHD 元件在阻断状态下所承受的最大电压RminHD 元件工作前的初始最小阻值RmaxiHD 元件末工作前的初始最大阻值选型指南1、 列出设备线路上的平均工作电流(I)和最大的工作电压(V)2、 列出工作环境温度正常值及范围,按折减率计算正常电流Ih (详见环境温度与电流值的折减率表)Ih=平均工作电流(I) 环境温度与电流值的折减率3、依据 L 、V 值,产品类别及安装方式选择一种自复保险丝系列。(参考各规格表)4、 选出的自复保险丝的I 值必需小于或等于 Ih,额定电流是在肯定的条件下给出的,假设要求工作在较宽的温度范围,应当留有肯定的裕量,一般可以取1.5
7、-2 倍。5、Vmax 指的是击穿电压,交直流均可以用。6、保护动作时间与电流成反比,但是至少是额定电流的两倍,类似于熔丝管。7、由于是半导体聚合物器件,所以开关次数不会那末少的。8、使用时留意它有肯定导通电阻,额定电流越大,电阻越小;高压型的电阻要更大一些。环境温度及电流值折减比率表SeriesHD600138%119%100%92%83%73%64%55%42%HD250132%117%100%91%85%77%68%61%48%HD90136%119%100%92%81%72%63%54%40%HD 60136%119%100%90%81%72%63%54%40%HD30130%115%
8、100%91%83%77%68%61%52%HD 16132%120%100%96%88%80%71%61%47%HD6130%115%100%91%83%77%68%61%52%HD-20 0 25 30 40 50 60 70 85 高分子 PTC 自复保险丝技术标准1、 额定零功率电阻PPTC 热敏电阻应按零功率电阻分档包装,并在外包装标明阻值范围。耐压、耐流力量测试后,每组样品中自身前的电阻变化率极差 |Ri 后-Ri 前/Ri 前-Rj 后-Rj 前/Rj 前 |100%2、 PTC 效应说一种材料具有 PTC (Positive Temperature Coefficient) 效
9、应, 即正温度系数效应,仅指此材料的电阻会随温度的上升而增加。如大多数金属材料都具有 PTC 效应。在这些材料中,PTC 效应表现为电阻随温度增加而线性增加,这就是通常所说的线性 PTC 效应。3、 非线性 PTC 效应经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性 PTC 效应。相当多种类型的导电聚合体会呈现出这种效应,如高分子 PTC 热敏电阻。这些导电聚合体对于制造过电流保护装置来说格外有用。4、 初始电阻 Rmin在被安裝到电路中之前,环境温度为 25的条件下测试,RF/WH 系列的高分子 PTC 热敏电阻的阻值。5、 Rmax在室温条件下,RF/
10、WH 系列高分子 PTC 热敏电阻动作或回流焊接安装到电路板中一小時后测得的最大电阻值。6、 最小电阻R /最大电阻R minmax在指定环境温度下,例如:25,安装到电路之前特定型号的 RF/WH系列高分子热敏电阻的阻值会在规定的一个范围内,即在最小值Rmin 和最大值Rmax之间。此值被列在规格书中的电阻栏里。7、 维持电流 Ihold维持电流是 RF/WH 系列高分子 PTC 热敏电阻保持不动作状况下可以通过的最大电流。在限定环境条件下,装置可保持无限长的时间,而不会从低阻状态转变至高阻状态。8、 动作电流 Itrip在限定环境条件下,使 RF/WH 系列高分子热敏电阻在限定的时间内动作
11、的最小稳态电流。9、 最大电流 I耐流值max在限定状态下, RF/WH 系列高分子 PTC 热敏电阻安全动作的最大动作电流,即热敏电阻的耐流值。超过此值,热敏电阻有可能损坏,不能恢复。此值被列在规格书中的耐流值一栏里。10、泄漏电流 IresRF/WH 系列高分子 PTC 热敏电阻锁定在其高阻状态时,通过热敏电阻的电流。11、最大工作电流/正常操作电流在正常的操作条件下,流过电路的最大电流。在电路的最大环境工作温度下,用来保护电路的 RF/WH 系列高分子 PTC 热敏电阻的维持电流一般来说比工作电流大。12、动作RF/WH 系列高分子 PTC 热敏电阻在过电流发生或环境温度增加时由低阻值向
12、高阻值转变的过程。13、动作时间过电流发生开头至热敏电阻动作完成所需的时间。对任何特定的RF/WH 系列高分子 PTC 热敏电阻而言,流经电路的电流越大,或工作的环境温度越高,其动作时间越短。14、Vmax最大电压耐压值在限定条件下, RF/WH 系列高分子 PTC 热敏电阻动作时,能安全承受的最高电压。即热敏电阻的耐压值。超过此值,热敏电阻有可能被击穿, 不能恢复。此值通常被列在规格书中的耐压值一栏里。15、最大工作电压在正常动作状态下,跨过 RF/WH 系列高分子 PTC 热敏电阻两端的最大电压。在很多电路中,相当于电路中电源的电压。16、导电聚合体在此指由导电粒子炭黑,碳纤维,金属粉末,
13、金属氧化物等填充绝缘的高分子材料聚烯烃,环氧树脂等而制得的导电复合材料。17、环境温度在热敏电阻或者一个联有热敏电阻元件的电路四周静止空气的温度。18、工作温度范围P 元件可以安全工作的环境温度范围。19、最大工作环境温度预期元件可以安全工作的最高环境温度。20、功率耗损RF/WH 系列高分子 PTC 热敏电阻动作后所消耗的功率,通过计算流过热敏电阻的泄漏电流和跨过热敏电阻的电压的乘积得到。21、高温,高湿老化在室温下, 测量 RF/WH 系列高分子 PTC 热敏电阻在较长时间(如 150 小时)处于较高温度(如 85)及高湿度(如 85% 湿度)状态前后的阻值的变化。22、被动老化测试室温下
14、,测量 RF/WH 系列高分子 PTC 热敏电阻长时间(如 1000 小时) 处于较高温度(如 70或 85)状态前后的阻值变化。23、冷热打击测试在室温下,RF/WH 系列高分子 PTC 热敏电阻的阻值在温度循环前后的变化的测试结果。(例如,在-55及+125之间循环 10 次)。24、PTC 强度 PTC 热敏电阻具有足够的 PTC 强度且不能消灭 NTC 现象。=lgR140C/R 室温5 R140C、R 室温 为 140与室温时的额定零功率电阻值。25、动作特性PTC 热敏电阻在耐压、耐流试验前、后都应进展不动作特性测试,并且,其中 R 为进展不动作特性试验时热敏电阻两端的 U/I,R
15、n 为额定零功率电阻初测值或复测值。26、恢复时间PTC 热敏电阻动作后的恢复时间应不大于 60S。27、失效模式试验在进展失效模式试验时,高聚 PTC 热敏电阻可能随试验或处于失效状态,允许的失效模式是开路或高阻状态,但整个试验过程中不得消灭低阻态或起明火。型号说明高分子 PTC 热敏电阻学问问答1. 高分子 PTC 热敏电阻主要应用于哪些方面?高分子 PTC 热敏电阻可用于计算机及其外部设备、移动 、电池组、远程通讯和网络装备、变压器、工业掌握设备、汽车及其它电子产品中, 起到过电流或过温保护作用。2. 高分子 PTC 热敏电阻与保险丝、双金属电路断路器及陶瓷 PTC 热敏电阻的主要区分是
16、什么?高分子 PTC 热敏电阻是一种具有正温度系数特性的导电高分子材料, 它与保险丝之间最显著的差异就是前者可以屡次重复使用。这两种产品都能供给过电流保护作用,但同一只高分子 PTC 热敏电阻能屡次供给这种保护,而保险丝在供给过电流保护之后,就必需用另外一只进展替换。高分子 PTC 热敏电阻与双金属电路断路器的主要区分在于前者在事故未被排解以前始终出于关断状态而不会复位,但双金属电路断路器在事故仍旧存在时自身就能复位,这就可能导致在复位时产生电磁涉及火花。同时,在电路处于故障条件下重接通电路可能损坏设备,因而担忧全。高分子 PTC 热敏电阻能够始终保持高电阻状态直到排解故障。高分子PTC 热敏
17、电阻与陶瓷PTC 热敏电阻的不同在于元件的初始阻值、动作时间对事故大事的反响时间以及尺寸大小的差异。具有一样维持电流的高分子 PTC 热敏电阻与陶瓷 PTC 热敏电阻相比,高分子 PTC 热敏电阻尺寸更小、阻值更低,同时反响更快。3. 高分子 PTC 热敏电阻的工作原理是什么?高分子 PTC 热敏电阻是由填充炭黑颗粒的聚合物材料制成。这种材料具有肯定导电力量,因而能够通过额定的电流。假设通过热敏电阻的电流过高,它的发热功率大于散热功率,此时热敏电阻的温度将开头不断上升, 同时热敏电阻中的聚合物基体开头膨胀,这使炭黑颗粒分别,并导致电阻上升,从而格外有效地降低了电路中的电流。这时电路中仍有很小的
18、电流通过,这个电流使热敏电阻维持足够温度从而保持在高电阻状态。当故障排解之后,高分子 PTC 热敏电阻很快冷却并将回复到原来的低电阻状态, 这样又象一只的热敏电阻一样可以重工作了。4. 怎样才能知道我手中的产品或样品是哪一种型号的高分子 PTC 热敏电阻?翰达电子生产的大局部高分子 PTC 热敏电阻标有产品的规格或型号,在产品规格书中也列出了标准的产品标志。但有些标志只能被有识别力量的厂商或代理识别。5. 高分子 PTC 热敏电阻的电阻值在非断路状态时会转变吗?高分子 PTC 热敏电阻的电阻值随着工作环境的变化会略有转变,一般随着温度及电流的增加电阻值上升,反之降低。6. 高分子 PTC 热敏
19、电阻的存贮期多长?假设存贮得当,高分子 PTC 热敏电阻的存贮期没有什么期限限制。假设暴露在过潮或过高温度下,一些规格产品性能可能会转变,比方锡铅的可焊性等,但是在正常的电器元件保存条件下可以长期保存。7. 什么状况下高分子 PTC 热敏电阻可以复位?复位的速度有多快?一般状况下只要除去加载在热敏电阻两端的电压,热敏电阻即可复位; 但假设外界环境温度很高时如 150热敏电阻不能复位。高分子 PTC 热敏电阻回复到低电阻状态需要的时间取决于多种因素:产品的类型、装配形式、构造、外界温度、断路状态的持续时间等。一般复位时间小于几分钟,某些状况下只需几秒钟热敏电阻即可复位。8. 高分子 PTC 热敏
20、电阻是自动复位吗?一旦排解故障和切断电源,热敏电阻即可复位,这时需要断开电路维持电流使热敏电阻冷却。热敏电阻中聚合物集体材料因冷却收缩从而炭黑颗粒重连接起来,使电阻降低。这与双金属片装置的自动复位不同。典型的双金属装置即使故障没有排解也能复位,这导致在故障状态和保护状态之间不停切换,这可能损坏设备。但高分子 PTC 热敏电阻会保持在高电阻状态直到故障排解。9. 能清洗高分子 PTC 热敏电阻吗?很多一般的电气元件清洗剂都可用来清洗该高分子 PTC 热敏电阻,但是一些清洗剂可能会损害热敏电阻的性能,清洗前最好进展试验或到我公司询问。10. 高分子 PTC 热敏电阻可以并联使用吗?可以。这样的主要
21、优点是可以降低电阻并提高维持电流。11. 高分子 PTC 热敏电阻可以串联使用吗?对多数使用来说这样没有什么好处,这样做是不有用的。由于总是有一个高分子 PTC 热敏电阻先断开,所以其它热敏电阻根本起不到额外的保护作用。12. 压力对高分子 PTC 热敏电阻有何影响?施加在热敏电阻上的压力可能影响产品的电性能。假设在热敏电阻切断电路时压力太大并限制了产品的膨胀,这将使热敏电阻失去特定的功能而损坏。应当留意不能将热敏电阻安装在限制其膨胀的地方。13. 将高分子 PTC 热敏电阻封装起来有何影响?一般说来我们并不主见对本公司的热敏电阻产品进展额外的封装。假设肯定要进展封装的话则应当留意对封装材料的
22、选择。假设封装材料太硬, 则会阻碍热敏电阻的膨胀,从而影响热敏电阻的正常使用。即使使用“软” 的密封材料,热敏电阻的散热性能也会受到影响。选型时应充分考虑封装对产品性能的影响,需要对产品进展封装时请向我公司询问。14. 高分子 PTC 热敏电阻的失效形式是什么?高分子 PTC 热敏电阻典型失效形式是产品室温电阻变得太大,这时产品的维持电流将变小。为了获得 UL 认证,热敏电阻必需到达两个标准:1能断路 6000 次而仍具有 PTC 力量;2保持断路状态 1000 小时而仍具有PTC 力量。假设热敏电阻在故障状态时超过了它的额定电压或电流,或者断路次数超出了 UL 检测要求,则热敏电阻可能变形和
23、燃烧。15. 在最大电压或断路电流下高分子 PTC 热敏电阻可以工作多少次?每一个高分子 PTC 热敏电阻都有额定工作电压,在故障发生时可以承受额定的断路电流。为获得 UL 认证,开关必需能断路 6000 次并保持 PTC 性质。对用在通信设备交换机、培训架保安单元等中的热敏电阻来说, 行标中规定了产品的使用寿命。这要求开关少则数十次,多则上百次能回复到初始特性值,设计者应牢记高分子 PTC 热敏电阻是用来防止故障的而不是将其断路状态象其正常状态一样使用。16. 涂覆于高分子 PTC 热敏电阻上的组分是什么?对 B 系列产品的封装材料为阻燃环氧树脂,对 D、DL 系列热敏电阻则为聚酯薄膜。这些
24、材料符合 UL94V-0 或 IEC95-2-2 标准的要求。17. 高分子 PTC 热敏电阻在使用时的最高环境温度是多少?这取决于所使用的产品系列。我们的产品在大多数使用状态下的环境温度可到达 85,对某些产品系列如 DL 系列产品,只到 70。对于外表贴装型的产品,可以短时间内承受焊锡焊接温度。在环境温度超过开关温度时,热敏电阻无法正常工作。18. 电流超过维持电流 IH 但未到达动作电流 IT 会怎样?维持电流I 是指在指定外界条件下能通过高分子PTC 热敏电阻而不会H导致其动作变成高电阻断路状态的最大稳定电流。动作电流IT定条件下通过高分子 PTC 热敏电阻会导致其动作的最小稳定电流。
25、是在指此时热敏电阻在不同状况可表现出不同的行为,这主要包括:环境温度、装配形式、热敏电阻的阻值等。因而热敏电阻可能保持低电阻状态, 或者很快动作,也可能经过较长时间才动作。在 I 和 I 之间的电流值可用一个区域表示,在这个区域与热敏电阻的HT开关状态有关,但电流数值范围不能精准推测。假设电流足够高,热敏电阻或者可能维持低电阻状态且保持这个低电流或者可能转变入高电阻状态,这取决于热敏电阻的初始电阻、外界环境以及装配条件。19. I 和 I 之间的关系是什么?为什么有差异?HT我们大局部产品 I 和 I 之间是 2:1 的关系。一些产品可能低达 1.7:TH1 而另一些产品可能高达 3:1。热敏
26、电阻的材料、加工方式及焊接形式的不同打算了 I 与 ITH的比值。我们大局部产品的实际比值为 2:1。20. R 、R 和 R 有什么不同?minmaxl在指定条件下例如:20,使用前特定型号热敏电阻的电阻值在规定的一个范围内,即在最小值R 和最大值R 之间。高分子PTCminmax热敏电阻在室温下动作完毕 1 小时后的电阻最大值或焊接到电路板一小时后的电阻值为 R 。l21. 高分子 PTC 热敏电阻动作完毕后 1 小时,复位的电阻是多少? 应低于热敏电阻的 R 。l22. 高分子 PTC 热敏电阻在断路状态的电阻是多少?高分子 PTC 热敏电阻在断路状态下的电阻取决于以下因素:使用的产品规
27、格、通过产品的电压及电流。电阻值可用以下公式求出:R =V2/P 。td23. 高分子 PTC 热敏电阻在动作状态下的工作寿命是多少?UL 认证要求热敏电阻产品在失去 PTC 特性前能保持 1000 小时的断路状态。在低于产品最高额定电压和电流的状况下可保持更长时间的断路状态。长时间处于断路状态可能会导致热敏电阻在复位后不能回复其初始电阻值和其它一些初始特性。每个热敏电阻的回复程度主要取决于故障条件和产品规格。24. 高分子 PTC 热敏电阻的电压降是多少?这取决于所使用的产品规格。假设知道该种规格热敏电阻的电阻值和稳定工作状态下通过的电流,电压降一般是可以计算的。典型的电压降数值可由 Rma
28、x 值求出,假设没有 Rmax 值,该电压降值为 Rmin 和 Rl 的平均值。假设用I 表示正常工作电流,Ropp表示高分子PTC 热敏电阻的电阻,则电路的电压降 V可由公式:V=I R 求出。dropdropopp25. 高分子 PTC 热敏电阻是否可以与过电压保护装置一起工作?在远程通讯应用中,高分子 PTC 热敏电阻多数与过电压保护装置并用。这些过电压保护装置,包括固体放电管、气体放电管、MOV、二极管等,可以对雷电、高频感应、电力线搭接等产生的高压进展保护,而高分子 PTC 热敏电阻则对产生的过流进展保护。26、高聚物过流保护元件是自动复位吗?只要排解故障和切断电源,高聚物过流保护元
29、件即可复位。但这时需要断开电路使过流保护元件冷却,以保证器件内聚合物与导电材料自动恢复到正常状态。27、对高聚物过流保护元件施加压力有何影响?对高聚物过流保护元件施加压力可能影响产品的电性能。对工作状态下的过流保护元件施加压力太大并限制了产品的膨胀,将使其推动特定的功能而被损坏。应当避开将过流保护元件安装在限制其膨胀的地方。28、封装高聚物过流保护元件会有何影响?通常状况,一般不要对高聚物过流保护元件进展额外的封装。假设肯定要封装,则应当学说坚封装材料的选择。封装材料太硬,会阻碍过流保护元件的膨胀,软的密封材料,也会影响过流保护元件的散热效果。所以选型时应充分考虑封装对产品性能的影响,需要时请
30、向我公司询问。高分子自恢复保险丝与玻璃管保险丝和陶瓷馆保险丝的 区分和选型方法一. 保险丝的分类保险丝是一种有意设置在电路中对电流敏感的薄弱环节的元件,在电路正常工作时,它对所保护的电路没有影响,它阻值小,最好没有阻值,没有功率消耗。当电路特别,电流过大或电路消灭短路时能够快速的切断电源,保护电路和其他的元器件。保险丝有很多种类型,常用的保险丝主要可分为玻璃管保险丝低区分力量、陶瓷管保险丝高区分力量和高分子自恢复保险丝PPTC 塑料聚合物制成三类。二. 保险丝的性能和参数1、额定电压额定电压是指保险丝断开后能承受的最大电压。保险丝接通时期两端所承受的电压远远小于其额定电压,在选用保险丝时一般均
31、要求其额定电压要大于有效的电路电压。2、额定电流额定电流是保险丝能长期工作的最大电流。假设保护电流为Ir,应中选用保险丝的额定电流为 In,则两者应满足以下条件 In=Ir/(fo*f1),fo 为对不同标准保险丝的折减率,对 ICE 标准的保险丝可以不加折减率,即 fo=1,对 UL 标准的保险丝,折减率 fo=0.75。f1 为考虑温度后的折减率,环境温度越高, 保险丝工作时就越热,寿命就越短。这里要着重说明的是指围围着保险丝四周的空气温度,不应与室温相混淆。不管是 UL 标准还是 ICE 标准,保险丝的各项要求都是在室温 25条件下制定的,就不需考虑家肯定的折减率。明显不同环境温度,保险
32、丝的折减率也不一样。以下图给出的是不同特性的保险丝在不同温度下的折减率,曲线 A 对应于玻璃管保险丝满熔断丝:低区分力量,曲线B 陶瓷管保险丝特快熔、快熔断保险丝和螺旋式绕制的保险丝:高区分力量 曲线 C 对应高分子自恢复保险丝PPTC 塑料聚合物制成保险丝由曲线可以看出熔断保险丝的材料具有较低的溶化温度,对环境温度比较灵敏其折减率比较大,而聚合物自恢复式保险丝对温度格外敏感,所以它随温度折减率最大。承受这件率后,既能保证电路的安全运行,又能使保险丝安全长寿的工作。例如:某电路额定电压为 12V,正常工作电流为 2A,假设承受高分子PPTC 自恢复式保险丝要求符合 UL 标准的保险丝,要求该保险丝长期工作在90,则所选用的保险丝额定电流为 In=Ir/(fo*f1)=2/(0.75*0.4)=6.6A,所以推举使用 HD16-700 自恢复保险丝。假设承受高分子 PPTC 自恢复式保险丝要求符合 ICE 标准的保险丝,要求该保险丝长期工作在 90,则所选用的保险丝额定电流为In=Ir/(fo*f1)=2/(1*0.4)=5A,所以推举使用 HD16-500 自恢复保险丝。很明显选用保险丝额定电流太大,当遇到特别状况时,保险丝很难熔断达不到保险的目的,假设选择的额定电流太小,即使未遇到特别状况保险丝也会保护,使电路无法正常工作。