《高三数学二轮培优微专题36讲34.随机游走与马尔科夫过程.docx》由会员分享,可在线阅读,更多相关《高三数学二轮培优微专题36讲34.随机游走与马尔科夫过程.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、随机游走与马尔科夫过程一基本原理1.转移概率:对于有限状态集合,定义:为从状态到状态的转移概率.2.马尔可夫链:若,即未来状态只受当前状态的影响,与之前的无关.3.一维随机游走模型.(公众号:凌晨讲数学)设数轴上一个点,它的位置只能位于整点处,在时刻时,位于点,下一个时刻,它将以概率或者()向左或者向右平移一个单位. 若记状态表示:在时刻该点位于位置,那么由全概率公式可得:另一方面,由于,代入上式可得:.进一步,我们假设在与处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,.随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为,原地不动,
2、其概率为,向右平移一个单位,其概率为,那么根据全概率公式可得:有了这样的理论分析,下面我们看全概率公式及以为随机游走模型在2019年全国1卷中的应用.二 典例分析.例1.(2019全国1卷)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验试验方案如下:每一轮选取两只白鼠对药效进行对比试验对于两只白鼠,随机选一只施以甲药,另一只施以乙药一轮的治疗结果得出后,再安排下一轮试验当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;
3、若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X(1)求的分布列;(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则,其中,假设,(i)证明:为等比数列;(ii)求,并根据的值解释这种试验方案的合理性解析:(1)由题意可知所有可能的取值为:,;则的分布列如下:(2),(i)即整理可得: 是以为首项,为公比的等比数列(ii)由(i)知:,作和可得:表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8
4、时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种实验方案合理.注:1.虽然此时学生未学过全概率公式,但命题人也直接把给出,并没有让考生推导这个递推关系,实际上,由前面的基本原理,我们可以看到,这就是一维随机游走模型.习题1足球是一项大众喜爱的运动.2022卡塔尔世界杯揭幕战将在2022年11月21日打响,决赛定于12月18日晚进行,全程为期28天.校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到记开始传球的人为第1次触球者,第次触球者是甲的概率记为,即(1)求(直接写出结果即可);(2)证明:数列为等比数列,并判断第19次与第20次触球者是甲的概率的大小解析:(1)由题意得:第二次触球者为乙,丙,丁中的一个,第二次触球者传给包括甲的三人中的一人,故传给甲的概率为,故(2)第次触球者是甲的概率记为,则当时,第次触球者是甲的概率为,第次触球者不是甲的概率为,则,从而,又,是以为首项,公比为的等比数列 则,故第19次触球者是甲的概率大