《湖北省武汉市江汉区2022-2023学年七年级下学期期中数学试题.docx》由会员分享,可在线阅读,更多相关《湖北省武汉市江汉区2022-2023学年七年级下学期期中数学试题.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、20222023学年度第二学期期中质量检测七年级数学试题考试时间:120分钟 试卷总分:150分第I卷(满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑。1.9的算术平方根是A 3 B 3 C D 2.下列四个数中,无理数是AB 1.414 CD3. 在平面直角坐标系中,下列各点在x轴上的是A (1,2) B (3,0) C (0,-1) D (-5,6)4. 如图,O是直线AB上一点,则AOD的大小是ABCD5. 如图,四边形ABCD的对角线交于点O,下列条件能判定的是ABCD6. 如图,在正方形网
2、格中,点A(1,-1),点B(3,2),则点C的坐标是A (4,-1) B (4,-2) C (5,-2) D(6,-2)7. 如图,已知直线AB,CD分别与EF,GH相交,图中,则4的大小是ABCD 8.下列式子正确的是ABCD9. 关于命题:若,则。下列说法正确的是A 它是真命题 B 它是假命题,反例,C 它是假命题,反例D 它是假命题,反例,10.已知A(3,-1),B(3,),则正方形ABCD的面积是A 3 B 7 C 9 D 2二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置。11. 64的立方根是_。12.在平面直角坐标系中,
3、已知点A在第二象限,且A到x轴的距离为3,到y轴的距离为4,则点A的坐标是_。13.实数的整数部分是_。14. 如图,在一块长a米,宽b米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移2米就得到它的右边线,则这块草地的绿地(图中阴影部份)面积是_平方米。15. 如图,数轴上点A表示的数为1,点B表示的数为2,以AB为边在数轴上方作一个正方形ABCD,以A为圆心,AC为半径作圆交数轴的负半轴于点E,则点E表示的数是_。16. 如图,将长方形纸片ABCD沿EF翻折,点C,D的对应点分别是点G,H,若,则BFG的大小是_。三、解答题(共5小题,共52分)下列各题需要在答题卷指定位置写出文字说
4、明、证明过程、计算步骤或作出图形。17.(每小题5分,共10分)计算:(1);(2)。18.(每小题5分,共10分)求下列各式中x的值:(1); (2)19.(本小题10分) 完成下面的证明:如图,。求证:。证明:,( )。又( ),E= (等量代换)。( )。( )。20.(本小题10分)如图有两个大小一样的正方形纸片,其边长为cm。小明按如图的方法把每个小正方形沿一条对角线裁成两个三角形,然后再把这四个三角形拼成一个大正方形。(1)这个大正方形的边长为_cm;(2)小明要在所拼成的大正方形中沿边的方向裁出一个长宽比为且面积为的长方形,问能否成功,试说明理由。21.(本小题12分)如图,已知
5、D是AE上一点,C是BF上一点。(1)如图(1),求证:;(2)如图(2),连接BD,。当时,求证:BD平分ABC;若,直接用含n的式子表示A的大小。第II卷(满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置。22. 已知平面内2025条不同的直线、,满足以下规律:,按此规律,则与,与的位置关系分别是_,_。23. 在正实数范围内定义一种运算“”:当时, ;当xy时,。则方程的解是_。24. 在平面直角坐标系中,将任意两点横坐标之差的绝对值与纵坐标之差的绝对值中较大的值定义为这两点的“切比雪夫距离”。例如,点A(3,-2),B
6、(-1,7),横坐标差的绝对值为=4,纵坐标差的绝对值为,所以A,B的切比雪夫距离为9.若点M(t,),N(2t,t-2)的切比雪夫距离为3,则t=_。25. 如图,E是线段AB上一点,F是线段DE的延长线上一点,ABF的平分线BG交EF于点G,交线段DA的延长线于点I,过点D作于点H,且.下列结论:;若,则。正确结论的序号是_。五、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形。26.(本小题10分)如图,在平面直角坐标系中,A,B,C,D,E,F,G,H均为格点,且四边形ADGH为正方形,将三角形ABC平移得到三角形DEF。(1)三角形D
7、EF是由三角形ABC向左平移_单位,向下平移_单位得到;若点M是三角形ABC内一点,它随三角形ABC按中方式平移后得到,求a和b的值;(2)若,则CBD可用,表示为_;(3)点B到线段AD的距离是_。27.(本小题12分)如图、已知,且线段DB的延长线BF平分ABC的邻补角ABE。(1)求证:;(2)若射线DB绕点D以每秒的速度逆时针方向旋转得,同时,射线BA绕点B以每秒2的速度逆时针方向旋转得,和交于点G,设旋转时间为t秒。当50t70,且时,求t的值;当0t70,则t的值是_。28.(本小题12分)在平面直角坐标系中,A(0,a),B(b,a),C(a,0),且(1)请直接写出点A,B,C
8、的坐标;(2)如图,点M在线段OA上,线段轴,点P从点M出发,沿x轴正方向平移,若,求点M的坐标;(3)在(2)的条件下,若,求点Q的坐标。一、选择题:1. A 2.D 3.B 4.C 5.A 6.C 7.D 8.D 9.D 10.B二、填空题:11. 4 12.(-4,3) 13. 3 14. 15. 16.三、解答题:17.(1)解:原式 。3分。5分(2)解:。3分=0.。5分18.(1)解:。2分。5分(当两解做了,且有一解是正确的给3分)(2)解: 。2分。4分。5分(只做对一解给3分)19. 两直线平行,同位角相等 对顶角相等 3内错角相等,两直线平行 两直线平行,同旁内角互补(以
9、上每空2分)20.(1)。3分设所裁长方形的长为5xcm,宽为3xcm,则 长为cm,宽为4cm 。8分42203 不能裁出 。10分21.(1)证明: ABC+A=180又ADC+A=180。5分(2) EDF=CDF又 (第21题 图2)BDC+CDF=90BDA+EDF=90BDA=BDC由(1)知AE/BF,AB/CDBDA=DBC BDC=DBADBC=DBABD平分ABC 。10分n+160。12分22. 23. 49或1 24. -3或 25. 26.(1) 4 3 。2分依题意得:-2-a-a+1=-4 a=12。3分2b+1-1-b=-3 b=-1.。4分(2)180-a+。
10、7分(3)。10分27.(1)证明: ABE是ABC的邻补角,ABE=80又BF平分ABEABF=12ABE=40又ABF=BDC。4分(2)50t70100ABG140,50BDG70点G如图过G作又 GM/AB/CDBGM=ABG=2t DGM=CDG=t-40BGD=BGM-DGM=2t-1-40=1+40又 f+40=100。8分 M 32或50 。12分28.(1)A(0,7),B(3,7),C(7,0) 。3分(2)解:设M(0,m)S四边形ABQP:S四边形OCQP=5:451+7m2=41+3 7-m2解得:。7分(3)可设Q(x,2),三角形APO的面积为,三角形BCQ的面积为S四边形ABQP=10 S四边形OCQP=8 S四边形ABCO=35 S1=72x-1i)当Q在四边形ABCO内时,S2=S四边形ABCO-S四边形ABQP-S四边形OCQP-S1又12S1=35-10-8-S1 S1=343即72x-1=343 x=8921 Q89212ii)当Q在四边形ABCO内时,S2=S四边形ABQP+S四形形OCQP+S1-S四边形ABCO又12S1=10+8+S1-35 S1=34即72x-1=34 x=757 Q7572。12分(第3问对一种情况得3分,两种全对得5分)